'
| ; " 2009-7704P

Trilinos Checkin Testing of Primary
Stable Code

Roscoe A. Bartlett
http://www.cs.sandia.gov/~rabartl/
Department of Optimization & Uncertainty Estimation
Trilinos Software Engineering Technologies and Integration Lead

Sandia National Laboratories

Sandia
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, National

Page 1 for the United States Department of Energy under contract DE-AC04-94AL85000. Laboratories

el
Trilinos “Stable” vs “Experimental”’ Code: Defined

» “Stable” Code and Tests:

13

“Meets one or more of the following criteria:
» Represents an important capability being used by an existing, or
* Represents a new capability that the authors are willing to stand behind
» Does not mean it is being targeted for the next release

Expected to be kept working at all times on the primary development platform
Developed and maintained to be highly portable
Maintained at the high quality as defined by modern SE principles

» “Experimental” Code and Tests:

Page 2

By definition, all remaining code that is not “Stable” code.

Represents fundamental research and may be developed with informal low-
guality software practices.

Any code that has a direct and mandatory dependency on any “Experimental”
code must also be considered to be “Experimental” code.

Developers should try to avoid depending on other “Experimental” code because
it is likely to be unstable and break frequently.

“Experimental” code should be protected behind ifdefs with macros that must be
defined in order to be built.

Sandia
National
Laboratories

= '
% Trilinos “Primary Stable” vs “Secondary Stable” Code

« Sub-categorizations of “stable” code:

— “Primary Stable” code is “Stable” code that only depends on:
* C, and C++ compilers
» Fortran 77 compiler (optional)
* BLAS and LAPACK
* MPI
— “Secondary Stable” code
« Has additional dependencies such as:
— SWIG/Python (i.e. PyTrilinos)
— Fortran 2003+ (i.e. ForTrilinos)

— External direct sparse solvers like UMFPACK, SuperLU, etc. (i.e. Amesos
adapters)

* Or, could be considered “Primary Stable” Code but is excluded from pre-checkin testing
— Didasko
— NewPackage
 “Stable” code in one package can only depend on “Stable” code in other
packages.

 “Stable” code should by default only build “Primary Stable” code.

« Enabling “Secondary Stable” code should require extra configure-ti
options. @

Page 3

Sandia
National
Laboratories

__ '
} Stable (Primary and Secondary) and Experimental Code

* Primary Stable Code and Tests:
— All affected code should be built and tested *before* a checkin
— CATEGORY in cmake/Trilinos[Packages, TPLs].cmake set to “PS”
— Required TPL dependencies on BLAS, LAPACK, and MPI (or less)
— Configured with:
-D Trilinos_ ENABLE_ALL_PACKAGES:BOOL=0ON\
-D Trilinos_ ENABLE_TESTS:BOOL=ON
» Secondary Stable Code and Tests:
— Represents an important (released) capability but has extra TPL dependencies
— *Note* be enabled for pre-checkin testing
— Tested by central framework resources (nightly integration testing)
— CATEGORY in cmake/Trilinos[Packages, TPLs].cmake set to “SS”
— Requires explicitly enabling “Stable” optional TPL dependencies

— Configured with:
-D Trilinos_ ENABLE_ALL_PACKAGES:BOOL=0ON\
-D Trilinos_ ENABLE_SECONDARY_STABLE_CODE=0ON \
-D Trilinos_ ENABLE_TESTS:BOOL=ON

 Tertiary Stable Code and Tests? (Right now just TPLS)
* Experimental Code:
— CATEGORY in cmake/Trilinos[Packages, TPLs].cmake set to “EX”
— Requires explicit enabling
— Tested by individual package teams (but posts results to main CDash dashboard)

_
}' Improving Stability of “Stable” code: Motivation

« Support deep stacks of vertically integrated Trilinos packages with
production APPs

« Support tighter coupling and co-development with production APPs
— SIERRA toolkit packages (STK_Mesh, STK_10, ...)
— Replace SIERRA framework code with Trilinos code (Teuchos::ParameterList, ...)
— Many many others ...

» Support more frequent, safer, higher quality, lower risk releases of Trilinos
» Improve overall development productivity and software quality

See:
Trilinos/doc/DevGuide/TrilinosSoftwareEngineeringlmprovements/*.tex

Sandia
National
Laboratories

Page 5

_
“Stable” Code: 100% Passing Test Policy

 All “Stable” code should have 100% passing tests 100% of the time on the primary
development platforms as the norm instead of the exception.

» Achieving 100% passing tests on auxiliary development platforms is also a priority but is
done in a secondary development loop.

 Afailing test on any testing platform should be addressed and be made to pass or be
disabled using the following algorithm:

Page 6

Fix the test in the strongest way possible

Or, loosen the “strength” of test to get it pass on that specific platform (i.e. by loosing a platform-
specific tolerance)

Or, disable the test and submit a new item to the sprint or product backlog (e.g. Bugzilla bug
report) so that it can be prioritized and fixed later

Or, remove the test and all of the associated code related to it

Sandia
National
Laboratories

_
Mivations for a 100% Passing Test Policy for “Stable” Code

— Why is 100% passing tests important?
« Package Y (reference package):
PaCkage Z — “Broken Window” Phenomenon
(down-stream) => One broken test begets others

. — Zero (0) is singularly different that 1 or X failing tests
i => People take notice of “all passed” vs “failed”
i — ‘M’ failing tests is not much different that ‘N’ failing tests
| v — 100% passing tests is a clear measure of the code health
Package Y — 100% passing test suite is unbiased criteria for code checkins

— 100% passing test suite is an unbiased measure for if any code has
been broken after a checkin

— Code coverage less meaningful when there are failing tests
» Package X (up-stream package being used by Package Y)

| v — 100% passing test suite for Package Z provides a clear means to
determine if changes in Package X break anything.

« Package Z (down-stream package that uses Package Y)

(Up-stream) — 100% passing test suite for Package Y gives Package Z developers
confidence that they can depend on and trust the code in Package Y.

« Bottom Line:
— 100% passing test suites help to build trust between developers
— 100% passing test suites help to avoid unnecessary communication
— 100% passing test suites help to avoid synchronization points

. 1 nNauuliai

Laboratories

(reference)

Package X

Page 7

_ '
} Waste Created By Lack of Sufficient Pre-Checkin Testing

4.b) Wastes time trying to figure out why

Package Z is failing (looks at VC logs, looks 5) Sends email to Packag.e Y
at dashboard results, etc.) developers to please fix the

q>_ problem
4.a) Checks out, builds, &
)\ tests

Downstream » Trilinos VC Repos
Package Z
Developers 7y 7'y

3) Sends failure email to
Package Z developers <">

1) Checkin that breaks
Cl Server Package Z N
2 6) Fixes problem and Upstream
checks in

2) Checks out, builds, Package Y

tests, and detects Developers

problems with

Package Z

* 90% of these problems can be avoided with sufficient pre-checkin testing!
« Catching the problem before checking in saves everyone wasted time!

Sandia
National
Laboratories

Page 8

_ <""'
} Automatic Dependency Handling for Pre-Checkin Testing

S cmake \

-D Trilinos ENABLE ALL PACKAGES:BOOL=OFF \
-D Trilinos ENABLE Epetra:BOOL=ON \

-D Trilinos ENABLE ALL FORWARD DEP PACAKGES:BOOL=ON \

-D Trilinos ENABLE TESTS:BOOL=ON \

Teuchos

A

[]

Libs & Tests

1
Thyra — p------mmmmmmmmmmmmooooooos :
o — .
Triutils ~ [e--------- EpetraExt
---» Epetra ¢

Lib Only

Page 9

Sandia
National
Laboratories

g
}' Pre-Checkin Testing: The checkin-test.py script

Python script that performs safe pre-checkin testing:
$ cd $TRILINOS_HOME
$ mkdir CHECKIN; echo CHECKIN >> .git/info/exclude; cd CHECKIN
$../checkin-test.py —do-alll
« Automatically figures out what Trilinos packages have been changed
« Automatically enables all downstream packages
« Configures, builds and runs tests
* Built-in Configurations:

« MPI_DEBUG (Optimized compiler options, checked STL, etc.) (Do
at least this build!)

« SERIAL_RELEASE (varies other configure options)

* Only enables Primary Stable Code!

« Strong warning options (warnings as errors is a problem)
« Sends emails after each build case is finished
« Sends final email if it is okay to commit or not
« Can automatically do the commit at the end (Recommended)
 Fully customizable (enabled packages, build cases, etc.)
- Documentation: checkin-test.py --help @ panda

Laboratories

Pt
checkin-test.py: Example Driver Script

Script | used on my machine (checkin-test-<mymachine>.sh):
#!/bin/bash
EXTRA_ARGS=$@
echo "-DBUILD_SHARED_LIBS:BOOL=0ON" > COMMON.config

/home/rabartl/PROJECTS/Trilinos.base/Trilinos/checkin-test.py \
--make-options="-j4" \

--ctest-options="-j4" \

--ctest-time-out=180 \
--commit-msg-header-file=checkin_message \

$EXTRA_ARGS

Run as (after symbolically linking into CHECKIN directory):
$./checkin-test-<mymachine>.sh —do-all —-commit

Example driver scripts (I symbolically link these):

sampleScripts/checkin-test-cygwin-rabartl.sh
sampleScripts/checkin-test-<mymachine>.sh
sampleScripts/checkin-test-scicolan-rabartl.sh

Sandia
National
Laboratories

el
%‘ checkin-test.py: Recommended Workflow

A) Fill out the checkin checklist message in a temporary text file
‘checkin_message’

B) Do local git commits (optional)

C) Run the checkin-test.py script:
$./checkin-test-mymachine.sh —do-all [-commit ...]

D) Go do something useful (e.g. go home, check email, review a paper, work on a
paper, talk with someone, ..)

D) Check your email later to see what happens

Conseguences:

« Documents a bullet-proof process for configuring, building, and testing Trilinos
« Does the VC commands to do a safe global checkin (ease git transition)

« Enjoy fewer bad checkins

« Spend less time driving the checkin process

Pt
checkin-test.py: Log files

Directory Structure for auto-generated log files

CHECKIN/
checkin-test.out
commitFinal.out
commitlnitial.out

pullinitial.out

push.out

MPI1_DEBUG/
configure.out
make.out
ctest.out

SERIAL_RELEASE/

See log files while configure, build, or test is being run do, for example:

Sandia
National
Laboratories

$ tail -f MPI_DEBUG/make.out

__
}qeckin-test.py: Cost of Pre-Checkin Testing (Average Case)

A) Enabling just ML and tests/examples in downstream packages

Enabled packages (libraries) (29/52): Teuchos, RTOp, Kokkos, Epetra, Zoltan, Shards, Triutils, Tpetra,
EpetraExt, Thyra, Isorropia, AztecOO, Galeri, Amesos, Pamgen, Ifpack, ML, Belos, Stratimikos, Meros, FEl,
Anasazi, , Sacado, Intrepid, NOX, Moertel, Rythmos, MOOCHO, Sundance

Enabled packages (tests/examples) (10/52): ML, Belos, Stratimikos, Meros, FEI, NOX, Moertel, Rythmos,
MOOCHO, Sundance

<fast-machine>, shared libs, from scratch <fast-machine>, shared libs, rebuilid

Build Type Build Test #tests Build Type Build Test #tests
(min) (min) (min) (min)

MPI_DEBUG 24.2 3.9 438 MPI_DEBUG 0.7 4.0 438

SERIAL_RELEASE 18.1 1.1 426 SERIAL_RELEASE 0.4 1.2 426

<average-machine>, shared libs, from scratch

<average-machine>, shared libs, rebuilid

Build Type Build Test #tests Build Type Build Test #tests
(min) (min) (min) (min)
MPI_DEBUG 59.0 6.5 434 MPI_DEBUG 1.4 6.6 434
SERIAL_RELEASE* 30.4 1.3 350 SERIAL_RELEASE* 0.7 1.3 350
« With shared libraries, rebuilds can be very fast!
* Use afast machine to checkin from! Sandia
@ National
Laboratories

* Sundance disabled on <average-machine> for serial build (see bug ???)

_
Meckin-test.py: Cost of Pre-Checkin Testing (Worst Case)

B) Enabling Teuchos and tests/examples in downstream packages

Enabled packages (libraries) (34/52): Teuchos, RTOp, Kokkos, Epetra, Zoltan, Shards, GlobiPack, Triutils,
Tpetra, EpetraExt, Thyra, OptiPack, Isorropia, AztecOO, Galeri, Amesos, Pamgen, Ifpack, Komplex, ML,
Belos, Stratimikos, Meros, FEI, Anasazi, RBGen, Sacado, Intrepid, NOX, Moertel, Rythmos, MOOCHO,

Sundance, CTrilinos

Enabled packages (tests/examples) (22/52): Teuchos, OptiPack, Isorropia, AztecOO, Galeri, Amesos, Ifpack,
Komplex, ML, Belos, Stratimikos, Meros, FEI, Anasazi, RBGen, Sacado, Intrepid, NOX, Moertel, Rythmos,
MOOCHO, Sundance

<fast-machine>, shared libs, from scratch

<fast-machine>, shared libs, rebuilid

Build Type Build Test #tests Build Type Build Test #tests
(min) (min) (min) (min)

MPI_DEBUG 48.0 8.34 1140 MPI_DEBUG 1.1 8.1 1140

SERIAL_RELEASE 37.3 1.9 1147 SERIAL_RELEASE 1.2 2.1 1147

<average-machine>, shared libs, from scratch

<average-machine>, shared libs, rebuilid

Build Type Build Test #tests Build Type Build Test #tests
(min) (min) (min) (min)
MPI_DEBUG 103.0 12.0 1136 MPI_DEBUG 2.3 12.0 1136
SERIAL_RELEASE* 63.5 2.5 1071 SERIAL_RELEASE* 1.49 2.5 1071
. . Sandia
* Sundance disabled on <average-machine> (see bug ???) National
Laboratories

__
}' checkin-test.py: Shared Libraries vs. Static Libraries

B) Enabling Teuchos and tests/examples in downstream packages

Enabled packages (libraries) (34/52): Teuchos, RTOp, Kokkos, Epetra, Zoltan, Shards, GlobiPack, Triutils,
Tpetra, EpetraExt, Thyra, OptiPack, Isorropia, AztecOO, Galeri, Amesos, Pamgen, Ifpack, Komplex, ML,
Belos, Stratimikos, Meros, FEI, Anasazi, RBGen, Sacado, Intrepid, NOX, Moertel, Rythmos, MOOCHO,
Sundance, CTrilinos

Enabled packages (tests/examples) (22/52): Teuchos, OptiPack, Isorropia, AztecOO, Galeri, Amesos, Ifpack,
Komplex, ML, Belos, Stratimikos, Meros, FEI, Anasazi, RBGen, Sacado, Intrepid, NOX, Moertel, Rythmos,
MOOCHO, Sundance

<average-machine>, shared libs, from scratch

<average-machine>, shared libs, rebuilid

Build Type Build Test #tests Build Type Build Test #tests
(min) (min) (min) (min)
MPI_DEBUG 103.0 12.0 1136 MPI_DEBUG 2.3 12.0 1136
SERIAL_RELEASE* 63.5 2.5 1071 SERIAL_RELEASE* 1.49 2.5 1071
<average-machine>, static libs, from scratch <average-machine>, static libs, rebuilid
Build Type Build Test #tests Build Type Build Test #tests
(min) (min) (min) (min)
MPI_DEBUG 115.3 10.7 1136 MPI_DEBUG 18.9 10.4 1136
SERIAL_RELEASE* 72.4 2.7 1071 SERIAL_RELEASE* 6.6 2.4 1071
* Rebuilds with shared libs can be *much* faster that with static libs!
. . : . Sandia
* Sundance disabled on <average-machine> for serial build (see bug ???) National
Laboratories

_ '
} Speeding up Pre-Checkin Testing: Current Approaches

* 100% safe approaches:
» Checkin from a fast workstation no mater where you develop (easy with git)
» Keep private development and checkin builds separate
» Enabled shared libraries (-DBUILD SHARED LIBS:BOOL=0N)
» Keep the CHECKIN builds up to date (could use crontab or just manually)

» Less than 100% safe approaches (from better to worst):
» Do only MPI_DEBUG build (--without-serial-release)
Disallow enabling all packages (--enable-all-packages=off)

« Example: Disables enabling all packages when cmake/TrilinosPackages.cmake
changes

Disable forward packages (--no-enable-fwd-packages)
« Example: Only tests in the package have changed
« Example: Good unit tests and minimal changes
Disabling specific downstream packages (--disable-packages=P1,...)
« Example: Disabling Sundance when testing Tpetra
Enabling only specific packages (--enable-packages=P1,...)
« Example: Only test a few packages
--enable-all-packages=off --enable-packages=Tpetra,Belos,Anasazi

_ '
} Improving Pre-Checkin Testing: Future Approaches

« Speeding up pre-checkin testing:

» Move to explicit template instantiation

» Forward declarations

« Use pIlmpl idiom (faster rebuilds)
Remove standard C++ headers out of Package ConfigDefs.hpp
Trim down number of “Basic Integration” test executables
More unit tests, faster more minimal basic integration tests
Move to a sub-package architecture in the CMake build system

 Improving consistency of pre-checkin testing:
« Standardize versions of GCC, MPI, BLAS, LAPACK etc. ...
=> Official Trilinos Developers Toolset

* Improving the portability testing of pre-checkin testing:
« Strong warnings and warnings as errors

* Requires standard versions of GCC and MPI!

=> Official Trilinos Developers Toolset @ Sandia

National
Laboratories

s
}' Extra Build/Test Cases

* Motivation:

 Your development work involves working with Secondary Stale or
Experimental code and you want to combine this with other standard
builds in the same process.

* Allow for extra user-defined build cases:
-- extra-builds=BUILD1,BUILD2,...,BUILDN
« Example: Test Secondary Stable Code and TPLs
$ echo “-DTPL_ENABLE_SCOTCH:BOOL=0ON”" >> WITH_SCOTCH.config
$./checkin-test-mymachine.sh --extra-builds=WITH_SCOTCH —do-all

Sandia
National
Laboratories

_g
Pre-Checkin Testing: Summary

 Using this script will improve the stability of Trilinos for everyone involved!
« Bad reasons to do a sloppy checkin:
“I want to integrate my code frequently”

=> Good motivation but not as important good testing

=> Checking in once a day is usually sufficient
* “| need to get this revision to a collaborator ASAP”

=> Just have them pull directly from your local git repository

 “In am doing porting work and can’t afford a complete test on the machine”

=> Pull local commits back to your git local working directory your
workstation and commit from there (remote test/push)

* “l am in a good point to checkpoint my changes”
=> Do a local git commit
 “| want to backup my work with history”
=> Use git to publish to a “backup” repository on a different machine
 “| want to checkin to feel a sense of completion”
=> Mental problem, seek help
* Please read “checkin-test.py —help” and give this a try!
- Please ask questions, give feedback! @ e

Laboratories

