Coopr: A COmmon Optimization Python Repository

William E. Hart*

Abstract

We describe Coopr, a COmmon Optimization Python Repository. Coopr inte-
grates Python packages for defining optimizers, modeling optimization applications,
and managing computational experiments. A major driver for Coopr development is
the Pyomo package, that can be used to define abstract problems, create concrete
problem instances, and solve these instances with standard solvers. Pyomo provides a
capability that is commonly associated with algebraic modeling languages like AMPL
and GAMS.

1 Introduction

Although high quality optimization solvers are commonly available, the effective integration
of these tools with an application model is often a challenge for many users. Optimization
solvers are typically written in low-level languages like Fortran or C/C++ because these
languages offer the performance needed to solve large numerical problems. However, direct
development of applications in these languages is quite challenging. Low-level languages
like these can be difficult to program; they have complex syntax, enforce static typing, and
require a compiler for development.

There are several ways that optimization technologies can be more effectively integrated
with application models. For restricted problem domains, optimizers can be directly in-
terfaced with application modeling tools. For example, modern spreadsheets like Excel
integrate optimizers that can be applied to linear programming and simple nonlinear pro-
gramming problems in a natural way. Similarly, engineering design frameworks like the
Dakota toolkit [6] can apply optimizers to nonlinear programming problems by executing
separate application codes via a system call interface that use standardized file I/0O.

Algebraic Modeling Languages (AMLs) are alternative approach that allows applica-
tions to be interfaced with optimizers that can exploit problem structure. AMLs are high-
level programming languages for describing and solving mathematical problems, particularly
optimization-related problems [12]. AMLs like AIMMS [2], AMPL [3, 8 and GAMS [10]
have programming languages with an intuitive mathematical syntax that supports concepts

*Sandia National Laboratories, Discrete Math and Complex Systems Department, PO Box 5800, Albu-
querque, NM 87185; 505-844-2217; wehart@sandia.gov

like sparse sets, indices, and algebraic expressions. AMLs provide a mechanism for defin-
ing variables and generating constraints with a concise mathematical representation, which
is essential for large-scale, real-world problems that involve thousands of constraints and
variables.

A related strategy is to use a standard programming language in conjunction with a
software library that uses object-oriented design to support similar mathematical concepts.
Although these modeling libraries sacrifice some of the intuitive mathematical syntax of
an AML, they allow the user to leverage the greater flexibility of standard programming
languages. For example, modeling tools like FLOPC++ [7], OPL [15] and OptimJ [16]
enable the solution of large, complex problems with application models defined within a
standard programming language.

The Coopr Python package described in this paper represents a fourth strategy, where
a high level programming language is used to formulate a problem that can be solved by
optimizers written in low-level languages. This two-language approach leverages the flexi-
bility of the high-level language for formulating optimization problems and the efficiency of
the low-level language for numerical computations. This approach is increasingly common
in scientific computing tools, and the Matlab TOMLAB Optimization Environment [20] is
probably the most mature optimization software using this approach.

Coopr is a COmmon Optimization Python Repository that supports the definition and
solution of optimization applications using the Python scripting language. Python is a pow-
erful dynamic programming language that has a very clear, readable syntax and intuitive
object orientation. Coopr was strongly influenced by the design of AMPL. Coopr’s Pyomo
package supports Python classes that can concisely represent mixed-integer linear program-
ming (MILP) models, and these models can be exported and solved by standard MILP
solvers. Coopr also provides a generic system call interface that is similar to the interface
used by Dakota.

Section 2 describes why Python was chosen for the design of Coopr and the impact that
this has had on the use of Coopr. Section 3 reviews other Python optimization packages
that have been developed, and discusses the high-level design decisions that distinguish
Coopr. The next sections describe two Coopr packages for optimization: Pyomo and Opt.
Section 4 describes Pyomo and contrasts Pyomo with AMPL. Section 5 describes the Coopr
Opt package and contrasts its capabilities with other Python optimization tools. Finally,
Section 6 describes future Coopr developments that are planned.

2 Why Python?

Python has been gaining significant acceptance in the scientific community. Python is
widely used in bioinformatics [17], and it has proven a flexible language for scripting high-
performance scientific software [4]. The SciPy [11] library includes a wide variety of mathe-
matical tools used for scientific computing, and the SAGE program [19] integrates these and
other math analysis tools into an application that is akin to Matlab and Mathematica.
Oliphant [13] provides a concise summary of the reasons why Python is an effective

language for scientific computing;:

e Features: Python has a rich set of datatypes, support for object oriented program-
ming, namespaces, exceptions, dynamic loading, and a large number of useful modules.

e Syntax: Python has a nice syntax that does not require users to type weird symbols
(e.g. $, %, @). Further, Python’s language naturally supports both procedural and
object-oriented software design.

¢ Extendability and Customization: Python has a simple model for loading Python
code developed by a user. Additionally, compiled code packages that optimize com-
putational kernels can be easily used. Python includes support for shared libraries
and dynamic loading, so new capabilities can be dynamically integrated into Python
applications.

e Interpreter: Python has a powerful interactive interpreter that allows realtime code
development and encourages experimentation with Python software.

e Documentation: Users can learn about Python from extensive online documentation,
and a number of excellent books that are commonly available.

e Support and Stability: Python is highly stable, and it is well supported through
newsgroups and special interest groups.

e Portability: Python is available on a wide range of compute platforms, so portability
is typically not a limitation for Python-based applications.

e Open Source License: Python is freely available, and its liberal open source license
lets you modify and distribute a Python-based application with few restrictions.

Another factor, not to be overlooked, is the increasing acceptance of Python in the scientific
community. Large Python projects like SciPy and SAGE strongly leverage a diverse set of
Python packages.

When considering languages for Coopr, the stability and open source license of Python
were critical features. Key motivating applications at Sandia National Laboratories required
an open source solution, which precludes the use of proprietary languages and tools like
AMPL and Matlab. The simplicity of Python’s language was also critical, since we needed
to have an intuitive syntax for Coopr’s Pyomo modeling package. Finally, the features of
Python’s standard libraries has been critical to the effective deployment of Coopr applica-
tions. For example, Python’s win32com module made it easy to read and write data in Excel
spreadsheets.

It is widely acknowledged that Python’s dynamic typing makes software development
quick and easy. However, this shifts the burden to developers to implement software tests
that validate the correctness of a Python package. Fortunately, Python packages can be easily
installed to support unit tests and record code coverage when they are run (see the nose and
coverage packages). Unlike similar tools used for low-level languages, the execution of these
testing tools does not require the recompilation or configuration of the Python software.

3 Python Optimization Tools

A variety of optimization packages have been developed in Python. We briefly describe these
packages here and illustrate their syntax for the following simple linear program:

minimize —4x; — dxo

subject to 2xy + x9 < 3 (1)
T+ 219 < 3
T1,22 > 0

Note that the following packages are designed to support the formulation and solution of
specific classes of structure optimization applications. Several authors have also developed
general-purpose optimizers in Python, such as genetic algorthms and swarm optimization.

3.1 CVXOPT

CVXOPT is a software package for convex optimization [5]. Its main purpose is to make the
development of software for convex optimization applications straightforward by building
on Python’s extensive standard library and on the strengths of Python as a high-level pro-
gramming language. CVXOPT includes interfaces to BLAS and LAPACK, and it leverages
the Python Numpy package to efficiently manipulate arrays and matrices in Python. CVX-
OPT interfaces with a variety of packages (GLPK, MOSEK and DSDP) to solve a variety
of convex problems, such as linear programs, second-order cone programs and semi-definite
programs.

CVXOPT overloads a variety of arithmetic operators and mathematical functions. These
can be used to define expressions for constraints and objectives of a problem. CVXOPT
leverages the fact that matrices and arrays are used in the specification of these expressions

to support a very concise syntax.
The following CVXOPT example minimizes the LP (1):

>>> from cvxopt.base import matrix

>>> from cvxopt import solvers

>>> ¢ = matrix([—4., —5.])

>>> G = matrix ([[2., 1., —-1., 0.], [1., 2., 0., —1.]])
>>> h = matrix ([3., 3., 0., 0.])
>>> sol = solvers.lp(c, G, h)

3.2 PulLP

PuLP is an open source software written in Python that can be used to describe linear
programming and mixed-integer linear programming optimization problems [18]. PuLP can
call a variety of external LP solvers (GLPK, CPLEX, XPRESS etc) to solve a model. Like

CVXOPT, PuL.P relies on overloading operators and commonly used mathematical functions

to define expression objects that define objectives and constraints. A problem object is
defined, and the objective and constraints are added using the += operator. Further, problem
variables can be defined over index sets to enable compact specification of constraints and
objectives.

The following PuLLP example minimizes the LP (1):

from pulp import

x1 = LpVariable(”x1”,0)

x2 = LpVariable(”x27,0)

prob = LpProblem (” Example” , LpMinimize)
prob 4= —4xx1 — 5%x2

prob += 2xx1 4+ x2 <= 3

prob 4+= x1 + 2xx2 <= 3

prob.solve ()

3.3 POAMS

POAMS is a Python modeling tool for linear and mixed-integer linear programs that defines
Python objects for abstract sets, constraints, objectives, decision variables, and solver in-
terfaces. These objects can be used to compose an abstract model definition, which is then
used to construct a concrete problem instance from a given data set. This separation of
the problem instance from the data facilitates the definition of abstract models that can be
populated from a diverse range of data sources.

POAMS models are managed by classes derived from the POAMS LP object. The
following POAMS example minimizes the LP (1) by deriving a class, instantiating it, and
then running the model:

from poams import x
class Example(LP):

index = Set(1,2)
x = Var(index)

obj = Objective ()
cl = Constraint ()
c2 = Constraint ()

def model(self):
self.obj . min(—4xself.x[1] — Bxself.x[2])
self.cl.load(2xself.x[1] + self.x[2] <
self.c2.load(self . x[1] + 2xself.x[2] <

3.0)
3.0)

prob = Example (). model ()
prob.solve ()

3.4 OpenOpt and SciPy

OpenOpt is a relatively new numerical optimization framework that is closely coupled with
the SciPy scientific Python package [14]. The primary goal of OpenOpt is to provide a
common syntax for many different optimization solvers. OpenOpt includes interfaces to a
diverse set of optimizers for problems like linear programs, nonlinear least squares and global
optimization problems. OpenOpt includes interfaces to external optimizers from the SciPy
package, CVXOPT, native Python optimizers, and interfaces to standalone packages.

The following OpenOpt example minimizes the LP (1):

from numpy import x

from scikits.openopt import LP
f = array([—4.0, =5.0])
A=mat(’2 1; 1 27)

b = [3, 3]
b = [0, 0]
ub = [inf, inf]

p = LP(f, A=A, b=b, lb=lb, ub=ub)
r = p.solve(’cvxopt_lp 7)

3.5 Coopr

We conclude this section by comparing and contrasting Coopr with these packages. The
Coopr Pyomo package is closely related to the modeling capabilities of PuLP and POAMS.
Pyomo defines Python objects that can be used to express models, and like POAMS, Py-
omo supports a clear distinction between abstract models and problem instances. The main
distinguishing feature of Pyomo is support for an instance construction process that is au-
tomated by object properties. This is akin to the capabilities of AML’s like AMPL and
GAMS, and it provides a standardized technique for constructing model instances. Pyomo
models can be initialized with a generic data object, which can be initialized with a variety
of data sources (including AMPL *.dat files).

The Coopr Opt package is closely related to the optimization objects defined by PuLP.
Like OpenOpt, the goal of this package is to support a diverse set of optimization methods
and applications. Coopr Opt includes a facility for transforming problem formats, which al-
lows optimizers to solve problems without the user worrying about solver-specific implemen-
tation details. Further, Coopr Opt supports mechanisms for reporting detailed information
about optimization solutions, in a manner akin to the OSrL data format supported by the
COIN-OR OS project [9].

4 The Coopr Pyomo Package

The Python Optimization Modeling Objects (Pyomo) package is a Coopr Python package
that can be used to define abstract problems, create concrete problem instances, and solve
these instances with standard solvers. Pyomo can generate problem instances and apply
optimization solvers with a fully expressive programming language. Python’s clean syntax
allows Pyomo to express mathematical concepts with a reasonably intuitive syntax. Further,
Pyomo can be used within an interactive Python shell, thereby allowing a user to interactively
interrogate Pyomo-based models. Thus, Pyomo has many of the advantages of both AML
interfaces and modeling libraries.

4.1 A Simple Example

In this section we illustrate Pyomo’s syntax and capabilities by demonstrating how a simple
AMPL example can be replicated with Pyomo Python code. Consider the AMPL model,
prod.mod:

set P;

param a {j in P};
param b;

param ¢ {j in P};
param u {j in P};

var X {j in P};

maximize Total Profit: sum {j in P} c[j] * X[j];
subject to Time: sum {j in P} (1/alj]) % X[j] <= b;
subject to Limit {j in P}: 0 <= X[j] <= u[j];

To translate this into Pyomo, the user must first import the Pyomo module and create
a Pyomo Model object:

#
Import Pyomo

#

from coopr.pyomo import x

#
Create model

#

model = Model ()

This import assumes that Pyomo is available on the users’s Python path (see Python docu-
mentation for PYTHONPATH for further details). Next, we create the sets and parameters
that correspond to the data used in the AMPL model. This can be done very intuitively
using the Set and Param classes.

model .P = Set ()

model.a = Param(model .P)
model.b = Param ()

model.c = Param(model.P)
model.u = Param(model.P)

Note that parameter b is a scalar, while parameters a, ¢ and u are arrays indexed by the set
P.
Next, we define the decision variables in this model.

model .X = Var(model.P)

Decision variables and model parameters are used to define the objectives and constraints in
the model. Parameters define constants and the variables are the values that are optimized.
Parameter values are typically defined by a data file that is processed by Pyomo.

Objectives and constraints are explicitly defined expressions in Pyomo. The Objective
and Constraint classes require a rule option that specifies how these expressions are con-
structed. This is a function that takes one or more arguments: the first arguments are
indices into a set that defines the set of objectives or constraints that are being defined, and
the last argument is the model that is used to define the expression.

def Objective_rule (model):

ans = 0
for j in model.P:
ans = ans + model.c[j] * model . X[]]
return ans
model. Total_Profit = Objective (rule=Objective_rule , sense=maximize)

def Time_rule(model):
ans = 0
for j in model .P:
ans = ans + (1.0/model.a[j]) % model .X[j]
return ans < model.b
model . Time = Constraint (rule=Time_rule)

def Limit_rule(j, model):

return (0, model.X[j], model.u[j])
model. Limit = Constraint (model.P, rule=Limit_rule)

The rules used to construct these objects use standard Python functions. The Time_rule
function includes the use of < and > operators on the expression, which define upper and
lower bounds on the constraints. The Limit_rule function illustrates another convention
that is supported by Pyomo; a rule can return a tuple that defines the lower bound, body
and upper bound for a constraint. The value 'None’ can be returned for one of the limit
values if a bound is not enforced.

Once an abstract model has been created, it can be printed as follows:

model . pprint ()

This summarize the information in the Pyomo model, but it does not print out explicit
expressions. This is due to the fact that an abstract model needs to be instanted with data
to generate the model objectives and constraints:

instance = model.create (” prod.dat”)
instance . pprint ()

Once a model instance has been constructed, an optimizer can be applied to it to find
an optimal solution. For example, the PICO integer programming solver can be used within
Pyomo as follows:

opt = solvers.SolverFactory (” pico”)
opt . keepFiles=True
results = opt.solve(instance)

This creates an optimizer object for the PICO executable, and it indicates that temporary
files should be kept. The Pyomo model instance is optimized, and the optimizer returns an
object that contains the solutions generated during optimization.

4.2 Pyomo Commandline Script

Appendix A provides a complete Python script for the model described in the previous
section. Although this Python script can be executed directly, Coopr includes a pyomo script
that can construct this model, apply an optimizer and summarize the results. For example,

the following command line executes Pyomo using a data file in a format consistent with
AMPL:

pyomo prod.py prod.dat

The pyomo script has a variety of command line options to provide information about the
optimization process. Options can control how debugging information is printed, including

logging information generated by the optimizer and a summary of the model generated
by Pyomo. Further, Pyomo can be configured to keep all intermediate files used during
optimization, which can support debugging of the model construction process.

5 The Coopr Opt Package

The goal of the Coopr Opt package is to support the execution of optimizers in a generic
manner. Although Pyomo uses this package, Coopr Opt is designed to support a wide range
of optimizers. However, Coopr Opt is not as mature as the OpenOpt package; it currently
only supports interfaces to a limited number of optimizers aside from the LP and MILP
solvers used by Pyomo.

Coopr Opt is supports a simple strategy for setting up and executing an optimizer, which
is illustrated by the following script:

opt = SolverFactory (name)
opt.reset ()
results = opt.solve(problem)

results . write ()

This script illustrates several design principles that Coopr follows:

e Dynamic Registration of Optimizers: Optimizers are registered via a plugin mech-
anism that provides an extensible architecture for developers of third-party optimizers.
This plugin mechanism includes the specification of parameters that can be initialized
from a configuration file.

e Separation of Problems and Solvers: Coopr Opt treats problems and solvers
as separate entities. This promotes the development of tools like Pyomo that support
flexible definition of optimization applications, and it enables automatic transformation
of problem instances.

e Problem Transformation: A key challenge for optimization packages is the need
to support a diverse set of problem formats. This is an issue even for LP and MILP
solver packages, where MPS is the least common denominator for users. Coopr Opt
supports an automatic problem transformation mechanism that enables the application
of optimizers to problems with a wide range of formats.

e Generic Representation of Optimizer Results: Coopr Opt borrows and extends
the representation used by the COIN-OR OS project to support a general representa-
tion of optimizer results. The results object returned by a Coopr optimizer includes
information about the problem, the solver execution, and one or more solutions gen-
erated during optimization.

If the problem in Appendix A is being solved, this script would print the following information
that is contained in the results object:

10

—— Solver Results —_

Problem Information

name: None
num_constraints: 5
num_nonzeros: 6
num_objectives: 1
num_variables: 2
sense: maximize

upper_bound: 192000

Solver Information

error_rc: 0
nbounded: None
ncreated : None
status: ok
systime: None
usrtime: None

Solution 0

gap: 0.0

status: optimal
value: 192000
Primal Variables

X_bands_ 6000

X_coils_ 1400
Dual Variables

c.u_Limit_1 4

c_u_Time_0 4200

It is worth noting that Coopr Opt currently does not support direct library interfaces to
optimizers, which is a feature that is strongly supported by Python. However, this is not
a design limitation, but instead has been a matter of development priorities. Efforts are
planned with the POAMS and PuLLP developers to adapt the direct solver interfaces used in
these packages for use within Coopr.

Although Coopr Opt development has focused on developing interfaces to LP and MILP
solvers, we have recently begun developing interfaces to general-purpose nonlinear program-

11

ming methods. One of the goals of this effort is to develop application interfaces that are
consistent with the interfaces supported by Acro’s COLIN optimization library [1]. COLIN
has recently been extended to support a system call interface that uses standardized file I/O.
An XML format has been developed that can be more rigorously checked than the file format
used by the Dakota toolkit [6], and this format can be readily extended to new application
results. Coopr Opt supports applications defined using this system call interface, which will
simplify the integration of COLIN optimizers into Coopr Opt.

6 Discussion

Coopr is being actively developed to support real-world applications at Sandia National
Laboratories. This experience has validated our assessment that Python is an effective
language for supporting the solution of optimization applications. Although it is clear that
custom languages can support a much more mathematically intuitive syntax, Python’s clean
syntax and programming model make it a natural choice for optimization tools like Coopr.

Coopr will be publicly released as an open source project in 2008. Future development
will focus on several key design issues:

e Interoperable with commonly available optimization solvers, and the relationship of
Coopr and OpenOpt.

e Exploiting synergy with POAMS and PuLLP. Developers of Coopr, POAMS and PulLP
are assessing this intersection to identify where synergistic efforts can be leveraged.
For example, the direct solver interface used by POAMS and PuLP can be adapted
for use in Pyomo.

e Extending Pyomo to support the definition of general nonlinear models. Conceptually,
this is straightforward, but the model generation and expression mechanisms need to
be re-designed to support capabilities like automatic differentiation.

Acknowledgements

We thank Jon Berry, Robert Carr and Cindy Phillips for their critical feedback on the design
of Pyomo. We also thank David Gay for developing the Coopr interface to AMPL NL and
SOL files. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear Security
Administration under Contract DE-AC04-94-AL85000.

References

[1] ACRO optimization framework. http://software.sandia.gov/acro.

12

[9]

[10]
[11]

[12]

[13]

[14]
[15]
[16]
[17]

AIMMS home page. http://www.aimms.com.
AMPL home page. http://www.ampl.com/.

D. BEAZLEY AND P. LOMDAHL, Building flexible large-scale scientific computing appli-
cations with scripting languages, in Proc. 8th STAM Conference on Parallel Processing
for Scientific Computing, 1997.

CVXOPT home page. http://abel.ee.ucla.edu/cvxopt.

M. S. ELDRED, S. L. BROwN, D. M. DuNLAvVY, D. M. GAy, L. P. SWILER, A. A.
GiunTAa, W. E. HART, J.-P. WATSON, J. P. EDDY, J. D. GRIFFIN, P. D. HOUGH,
T. G. KoLba, M. L. MARTINEZ-CANALES, AND P. J. WiLLiAMS, DAKOTA, a mul-
tilevel parallel object-oriented framework for design optimization, parameter estimation,

uncertainty quantification, and sensitivity analysis: Version 4.0 users manual, Tech.
Report SAND2006-6337, Sandia National Laboratories, 2006.

FLOPC++ home page. https://projects.coin-or.org/FlopC++.

R. FOURER, D. M. GAY, AND B. W. KERNIGHAN, AMPL: A Modeling Language for
Mathematical Programming, 2nd Ed., Brooks/Cole-Thomson Learning, Pacific Grove,
CA, 2003.

R. FOURER, J. MA, AND K. MARTIN, Optimization services: A framework for dis-
tributed optimization, Mathematical Programming. (submitted).

GAMS home page. http://www.gams.com.

E. JoNEs, T. OLIPHANT, P. PETERSON, ET AL., SciPy: Open source scientific tools
for Python, 2001—.

J. KALLRATH, Modeling Languages in Mathematical Optimization, Kluwer Academic
Publishers, 2004.

T. E. OLIPHANT, Python for scientific computing, Computing in Science and Engi-
neering, (2007), pp. 10-20.

OpenOpt home page. http://scipy.org/scipy/scikits/wiki/OpenOpt.
OPL home page. http://www.ilog.com/products/oplstudio.
Ateji home page. http://www.ateji.com.

J. PAINTER AND E. A. MERRITT, mmLib Python toolkit for manipulating annotated

structural models of biological macromolecules, J. Applied Crystallography, 37 (2004),
pp. 174-178.

13

(18] PuLP: A python linear programming modeler. http://130.216.209.237/engsci392/
pulp/FrontPage.

[19] W. STEIN, Sage: Open Source Mathematical Software (Version 2.10.2), The
Sage Group, 2008. http://www.sagemath.org.

[20] TOMLAB optimization environment. http://www.tomopt.com/tomlab.

14

A A Complete Python Example

7
Imports

#

from coopr.pyomo import =

#
Setup the model

i
model = Model ()

model .P = Set ()

model.a = Param(model.P)
model .b = Param ()

model.c¢ = Param(model .P)
model .u = Param(model .P)

model .X = Var(model.P)

def Objective_rule (model):

ans = (
for j in model .P:
ans = ans + model.c[j] % model . X[j]
return ans
model. Total _Profit = Objective (rule=Objective_rule , sense=maximize)

def Time_rule(model):
ans = 0
for j in model.P:
ans = ans + (1.0/model.a[j]) % model .X[j]
return ans < model.b
model. Time = Constraint (rule=Time_rule)

def Limit_rule(j, model):

return (0, model.X[j], model.u[j])
model . Limit = Constraint (model.P, rule=Limit_rule)

15

