Coopr User Manual: Customizing Coopr with Plugins

William E. Hart? John Siirola? Jean-Paul Watson®

November 8, 2009

ISandia National Laboratories, Discrete Math and Complex Systems Department, PO Box 5800,
Albuquerque, NM 87185; wehart@sandia.gov

2TBD

3Sandia National Laboratories, Discrete Math and Complex Systems Department, PO Box 5800,
Albuquerque, NM 87185; jwatson@sandia.gov

Contents

1 Introduction

2.1
2.2

2.3
24

2.5

3.1
3.2
3.3
3.4

PyUtilib Component Architecture

Overviewo
Core Plugin Classes
2.2.1 Interfaces and Extension Points
2.2.2 Plugins and Environments L.
2.2.3 Global Plugin Data
A Simple Example
Plugin Implementations o L
2.4.1 Options and Configuration Files
2.4.2 Plugin Loaders
2.4.3 Registering Executables
Related Frameworks

Coopr Plugins

Overview
Coopr Interfaces
Example: A p-Median Solver
Deploying Plugin Packages L.
3.4.1 Backgroundo
3.4.2 Example: coopr.pluginsmeoso

0 ~1 =

Chapter 1

Introduction

Coopr leverages the PyUtilib Component Architecture (PCA) to support plugins that ex-
tend Coopr’s built-in functionality. PCA supports an object oriented approach to software
design, which is an accepted strategy for managing software complexity in large systems. Ob-
ject oriented design is traditionally done using classes and class inheritance; classes define
interfaces, which are extended and customized in subclasses using class inheritance.

The main idea behind PCA is to separate the declaration of component interfaces from
their implementation. This allows for a more flexible design of software components that
further encourages modularity of components. Additionally, PCA includes a global com-
ponent registry, as well as a framework for automating the execution of components that
match a given interface. This capability facilitates the dynamic registration and application
of components within large software systems.

The plugin components supported by Coopr have a variety of signficant impacts on the
development and deployment of Coopr applications:

e Plugins facilitate extensions of Coopr without risk of destabilizing core functionality.

e Plugins allow third-party developers to add value without requiring direct involve-
ment of the core developers. For example, Pyomo extensions can be developed and
distributed without requiring developer access to Coopr’s subversion repository. Sim-
ilarly, third-party developers can develop plugins that are specific to their working
environment or business needs.

e The PCA can automate the activation of external software interfaces, based on the
user’s environment. For example, optimization solvers can be automatically registered
if they are found with the user’s PATH environment.

e New capabilities can be dynamically loaded at run-time. Python EGG files provide
a standard, modular mechanism for distributing plugins. The PCA can dynamically
load EGG files, which allows users to dynamically activate plugins.

Chapter 2 provides a detailed description of the PyUtilib Component Architecture. Chap-
ter 3 descripts the plugin interfaces that are supported in Coopr. Further, this chapter pro-
vides examples for how these plugins can be used to augment the Coopr’s core functionality.

Chapter 2

PyUtilib Component Architecture

The PyUtilib Component Architecture (PCA) is an extension of the Trac plugin frame-
work [8] that is included in the PyUtilib software package [5]. There does not appear to be
a standard Python plugin framework, though there are some mature packages that support
plugins including Zope [10], Envisage [3], Trac [8], yapsy [9] and SprinklesPy [6]. Although
we discuss the design requirements for PCA later, PCA was initially motivated by the de-
sire to use Trac’s plugin framework within a self-contained packages. The core of PCA is
provided by PyUtilib’s pyutilib.plugin.core module.

2.1 Overview

The PCA is comprised of a small set of Python classes. A plugin is a class that implements a
set of related methods the context of the application, and a service is an instance of a plugin
class. Two different types of plugins are available: singleton and non-singleton plugins.
There is at most one service for a singleton plugin, whereas there can be multiple services of
non-singleton plugins.

A software application can declare extension points that other components can plug in to.
This mechanisms supports a flexible, modular programming paradigm that enables software
applications can be extended in a dynamic manner. Extension points and the extensions
contributed to them are stored in a global registry, and execution of these extensions is
handled in a standardized manner. Thus, an application developer can define extension
points without knowing how they will be implemented, and extension developers can register
extensions without needing to know the details of how they are employed.

Extension points are defined with respect to an interface class that implicitly defines the
registration type that is used for a plugin. Further, a plugin class includes a declaration
that it implements one-or-more interfaces. An interface is defined by the methods and
data that are used. However, the PCA does not enforce this interface or support interface
conversions (see Zope [10] and Envisage [3] for examples of plugin frameworks that support
this functionality).

2.2 Core Plugin Classes
The PyUtilib plugin framework consists of the following core classes:

pyutilib.plugin.core.Interface Subclasses of this class declare plugin interfaces that are
registered in the framework

pyutilib.plugin.core.ExtensionPoint A class used to declare extension points, which can
access services with a particular interface

pyutilib.plugin.core.Plugin Subclasses of this class declare plugins, which can be used to
implement interfaces within this plugin framework.

pyutilib.plugin.core.SingletonPlugin Subclasses of this class declare singleton plugins,
for which a single service is constructed.

pyutilib.plugin.core.PluginEnvironment A class that maintains the registries for inter-
faces, extension points, plugins and services.

pyutilib.plugin.core.PluginGlobals A class that maintains global data concerning the
set of environments that are currently being used.

pyutilib.plugin.core.PluginError The exception class that is raised when errors arise in
this framework.

2.2.1 Interfaces and Extension Points

A subclass of the Interface class is used to declare extension points in an application. The
ExtensionPoint class is used to declare an extension point and to retrieve information about
the plugins that implement the specified interface. For example, the following is a minimal
declaration of an interface and extension point:

class Mylnterface(Interface):
??”An_interface._subclass”””

ep = ExtensionPoint (Mylnterface)

Note that the MyInterface class is not required to define the API of the interface. The PCA
does not enforce checking of API conformance for plugins, and hence any declaration in the
MyInterface class would be ignored. Additionally, note that an instance of MyInterface is
not created; declaring the plugin interface simply requires the specification of a subclass of
Interface.

An instance of ExtensionPoint can be used to iterate through all extensions, or to search
for an extension that matches a particular keyword. For example, the following code iterates
through all extensions and applies the pprint method:

8

for service in ep:
service.pprint ()

If you wish to know the number of services that are registered with an extension point, you
can call the standard len function:

print len (ep)

Several other methods can be used to more carefully select services from an extension point.
The extensions method returns a Python set object that contains the services:

#

This loop iterates owver all services, just the same as when an
the iterator method is used (see above).
7#
for service in ep.extensions():
service.pprint ()

#

This loop iterates over all servicess, including the ’disabled’
services.
#
for service in ep.extensions(all=True):
service.pprint ()

This example illustrates the optional argument that indicates whether the set returned by
extensions includes all disabled services. It is convenient to explicitly support enabling and
disabling services in many applications, though services are enabled by default. Disabled
services remain in the registry, but by default they are not included in the set returned by
an extension point.

Finally, the PCA can support named services, which requires that the services have a
name attribute. Service names are not required to be unique. For example, when multiple
instances of a non-singleton plugin are created, then these services can be accessed as follows:

#
A simple plugin that implements the Mylnterface interface

a
class MyPlugin(Plugin):
implements (MyInterface)

def __init__(self):

self .name="myname”

Another simple plugin that implements the Mylnterface interface

#
class MyOtherPlugin (Plugin):
implements (MyInterface)

def __init__(self):

self .name="myothername”

#

Constructing services

#

servicel = MyPlugin ()
service2 = MyPlugin ()
service3d = MyOtherPlugin ()

#

A function that iterates over all Mylnterface services , and
returns the MyPlugin instances (which are servicel and service?2).
#
def get_services ():
ep = ExtensionPoint (MylInterface)
return ep (”myname”)

In some applications, there is a one-to-one correspondence between service names and their
instances. In this context, a simpler syntax is to use the service method:

class MySingletonPlugin (SingletonPlugin):
implements (MyInterface)

def __init__(self):

self .name=" mysingletonname”
ep = ExtensionPoint (MylInterface)

ep.service ("mysingletonname”). pprint ()

The service method raises a PluginError if there is more than one service with a given
name. Note, however, that this method returns None if no service has been registered with
the specified name.

Note that an integer cannot be used to select a service from an extension point. Services
are not registered in an indexable array, so this option does not make sense.

10

2.2.2 Plugins and Environments

PCA plugins are subclasses of either the Plugin or SingletonPlugin classes. Subclasses of
Plugin need to be explicitly constructed, but otherwise they do not need to be registered;
simply constructing a subclass of Plugin invokes the registration of that instance. Simi-
larly, simply declaring a subclass of SingletonPlugin invokes both the construction and
registration of this plugin service.

PCA plugins are registered with different interfaces using the implements function (which
is a static method of Plugin). Note that a plugin can be registered with more than one
interface. Plugins are applied to different extension points independently, but they can
maintain state information that impacts their use across different extension points.

The plugin and interfaces are organized within namespaces using the PluginEnvironment
class. A global registry of plugin environments is maintained by the PluginGlobals class.
This registry is a stack of environments, and the top of this stack defines the current environ-
ment. When an interface is declared, its namespace is the name of the current environment.
For example:

#
Declare an interface in the current environment
#
class Interfacel (Interface):
pass
#
Set the current environment to ’‘new_environ’
#

PluginGlobals.push_env("new_environ”)

#

Declare an interface in the ’‘new_environ’ environment

7

class Interface2(Interface):

pass
#
Go back to the original environment
#

PluginGlobals . pop_env ()
The namespace that an Interface subclass is declared in defines the namespace where

plugin services will be registered. Additionally, a plugin service will be registered in the
namespace where it is declared. For example:

11

#

Declare Interfacel in namespace envl

7
PluginGlobals.push_env (”envl”)

class Interfacel (Interface):

pass
#
Declare Interface?2 in namespace env2
#

PluginGlobals.push_env(”env2”)

class Interface2(Interface):
pass

PluginGlobals.pop_env ()

a

Declare Pluginl in namespace envSd

#
PluginGlobals.push_env(”env3”)

class Pluginl (Plugin):

implements (Interfacel)
implements (Interface2)
implements (Interfacel ,”env4”)

PluginGlobals.pop_env ()

When Pluginl is instantiated, it’s services are registered in the following environments:

envl for Interfacel
env2 for Interface?2
env4d for Interfacel
envd

The last registration is the default. A plugin service is always registered in the environment
in which it was declared.

Namespaces provide a mechanism for organizing plugin services in an extensible manner.
Applications can define new namespaces that contain their services without worrying about
conflicts with services defined in other Python libraries.

12

2.2.3 Global Plugin Data

Global plugin data in PCA is managed in the PluginGlobals class. This class contains a
variety of static methods that are used to access this data:

default_env This method returns the default environment, which is constructed when the
plugins framework is loaded.

env This method returns the current environment if no argument is specified. Otherwise,
it returns the specified environment.

push_env,pop_env These methods respectively push a new environment onto the environ-
ment stack and pop the current environment from the stack.

services This method returns the plugin services in the current environment (or the named
environment if one is specified).

load services Load services using IPluginLoader extension points.

pprint This method provides a text summary of the registered interfaces, plugins and ser-
vices.

clear This method empties the environment stack and defines a new default environment.
This setup then bootstraps the configuration of the pyutilib.plugin.core environ-
ment. Note that this does not clear the plugin registry; in practice that may not make
sense since it is not easy to reload modules in Python.

2.3 A Simple Example

Figure 2.1 provides a simple example that is adapted from the description of the Trac com-
ponent architecture [7]. This example illustrates the three main steps to setting up a plugin:

1. Defining an interface
2. Declaring extension points
3. Defining classes that implement the interface.

In this example, a singleton plugin is declared, which automatically registers the plugin ser-
vice. Non-singleton plugin services need to explicitly created, but they are also automatically
registered.

If the script in Figure 2.1 is in the todo. py file, then the following Python script illustrates
how this plugin is used:

13

from todo import x

Construct a TodoList object and then add several items.
todo_list = TodoList ()
todo_list .add('Make_coffee’, ’Really_need._to._make_some._coffee’)
todo_list .add(’Bug_triage

"Double—check _that._all _known_issues _were_addressed ")

This script generates the following output:

Task: Make coffee
Really need to make some coffee
Task: Bug triage
Double—check that all known issues were addressed

2.4 Plugin Implementations

In addition to the core plugin framework, PCA includes implementations for a variety of
plugins that support commonly used functionality. The following sections briefly describe
these plugins.

2.4.1 Options and Configuration Files

The pyutilib.plugin.config package defines interfaces and plugins for managing service
options. The Configuration service is used to manage the global configuration of all ser-
vices. This class coordinates with Option services. Plugins can declare options with the
declare_option method, which registers these options with the Configuration service.
This service reads and writes options to configuration files (using Python’s ConfigParser
package).

This package also declares the ManagedPlugin and ManagedSingletonPlugin classes,
which are plugin base classes that include options that can be used to enable or disable
services using the Configuration service. In practice, most plugins will be derived from
these plugin base classes.

2.4.2 Plugin Loaders

PCA plugins can be loaded from either Python modules or Python eggs. This capability
supports the runtime extension of the plugins framework, which has proven very powerful
in frameworks like Trac. The core plugin framework defines extension points that use these
loaders, which can be applied as follows:

import sys

14

A simple example that manages a TODO list. An observer
interface is used to add actions that occur when a TODO
item 1s added.

from pyutilib.plugin.core import x

An interface class that defines the API for plugins that
observe when a TODO item is added.
class ITodoObserver (Interface):

def todo_added (name, description):
777 Called owhen_a_to—do.item._is _added.”””

The TODO application , which declares an extension point
for observers. QObservers are notified when a new TODO
item 1s added to the TODO list.
class TodoList (object):

observers = ExtensionPoint (ITodoObserver)

def __init__(self):

799

uuuuuuuuuuuu The_TodoList .constructor ,_.which_.initializes _.the_list

999 9

e e e e e e e e e e

self.todos = {}

def add(self , name, description):
777 Add_a _TODO, _and_notify .the_observers”””
assert not name in self.todos, 'To—do_already.in_list’
self.todos [name] = description
for observer in self.observers:
observer.todo_added (name, description)

A plugin that prints information about TODO items when they
are added.
class TodoPrinter (SingletonPlugin):

implements (ITodoObserver)

def todo_added(self, name, description):
print ’'Task:’, name

9)

print ’_____ , description
Figure 2.1: A simple example of the Python Component Architecture

15

Trac Class Name PyUtilib Class Name

Interface Interface
ExtensionPoint ExtensionPoint
Component SingletonPlugin

ComponentManager | PluginEnvironment

import os
env = sys.environ ["PATH” |
PluginGlobals.load _services (path=env.split (os.sep))

In this example, the user’s PATH environment is used to define the list of directories that are
searched for Python modules and eggs.

2.4.3 Registering Executables

The ExternalExecutable plugin is used to define services that provide information about
external executables. Services declare the executable name and user documentation, and
then service methods indicate whether the executable is enabled (i.e. whether it is found,
and the path of the executable:

J

service = ExternalExecutable (name="1s ",
doc="A_utility _to_list .file_.in_.Unix_operating.systems’)

service .enabled ()
Returns True if the executable is found on the wuser path.

service.get_path ()
Returns a string that defines the path to this executable,
or None if service is disabled.

2.5 Related Frameworks

The general design of PCA is adapted from Trac [8]. The PCA generalizes the Trac compo-
nent architecture by supporting namespace management of plugins, as well as non-singleton
plugins. For those familiar with Trac, the following classes roughly correspond with each
other: The PluginEnvironment class is used to manage plugins, but unlike Trac this class
does not need to be explicitly constructed.

As we noted earlier, there are a variety of mature component architectures that support
plugins. The following requirements were motivated by our plugin use cases, which ultimately
led to the development of PCA:

16

Well-defined framework core: Many component architectures are embedded in larger
software frameworks, which makes it difficult to extract and use just the software
packages related to the component architecture.

Non-Singleton plugins: The computational science applications that motivate PCA
require both singleton and non-singleton plugins.

Namespaces: Using plugins in large software projects requires management across mul-
tiple libraries. Namespaces are needed to effectively manage plugins in these complex
software projects.

Caching: PCA plugins need to be used in applications where plugin services are called
many times. Thus, caching of extension point setup is needed to minimize the overhead
of the PCA infrastructure.

Loading from EGGs: Support for loading EGG files is invaluable in dynamic applica-
tions. Further, loading plugins from EGG files provides another level of modularity to
the management of software applications.

17

18

Chapter 3

Coopr Plugins

3.1 Overview

A common object oriented approach for mathematical programming software is to use classes
and class inheritance. For example, the OPT++ [4] optimization software library defines
base classes with different characteristics (e.g. differentiability), and a concrete optimization
solver is instantiated as a subclass of an appropriate base class. In this context, the base
class can be viewed as defining the interface for the solvers that inherit from it.

Coopr plugins leverage the PyUtilib Component Architecture (PCA) to separate the
declaration of component interfaces from their implementation. For example, the interface
to optimization solvers are again declared with a class. However, solver plugins are not
required to be subclasses of the interface class. Instead, they are simply required to provide
the same interface methods and data.

The following sections detail the component interfaces that are supported in Coopr, and
provide examples for how new plugins can be used with Coopr’s Pyomo modeling language.

3.2 Coopr Interfaces

Coopr defines a variety of solver interfaces that can be used to customized and extend core
Coopr functionality. The coopr.opt interfaces define capabilities that are needed perform
optimization. The main interface is I0ptSolver, which defines how optimizers behave:

class [OptSolver(Interface):

77?7 Interface_class_for_creating_optimization._.solvers”””
def available(self , exception_flag=True):

777 Determine.if _this_optimizer_is_available.”””

def solve(self, xargs, sxkwds):

9 979

19

uuuuuuuu Perform_optimization_and_return_an.SolverResults_object.
299

[I g S

def reset(self):
777 Reset _the_state_of _an_optimizer

9999

def set_options(self, istr):

9999

uuuuuuuu Set _.the_options.in_the_optimizer_from_a_.string.

99 9

AP

The remaining interfaces in coopr.opt support capabilities that are used to execute
external optimizers that are executed from a shell command. Executing external optimizers
requires the following steps:

e write files that define the optimization problem

e convert files into a format that can be read by the external optimizer
e execute the optimizer

e read files that define the optimizer results and execution status

The IProblemWriter, IProblemConverter and IProblemReader interfaces are used to de-
fine components to execute these steps. This allows for a very flexible infrastructure, since
the user no longer needs to worry about the compatibility between the optimization software
and the modeling tool.

The coopr. pyomo interfaces define capabilities that are needed to model integer programs
in Pyomo. The IPyomoExpression interface is used within Pyomo to define expression types.
The IPyomoSet interface can be used to define new types of set objects (e.g. Integers).

The IModelComponent interface can be used to define new modeling components that
are recognized by Pyomo. The standard modeling components include Var, Objective
and Param objects. However, Pyomo generates models by sequentially constructing each
component. This construction process can be customized to perform general operations on
the model. For example, the BuildCheck plugin applies a function to a set of indices and
validates that the function is true for all indices:

#
Verify that all A[i] values are non—negative.

#

def rule(i, instance):
return instance.A[i] >= 0.0

7
model. check = BuildCheck (model.I, rule)

20

Finally, the IPyomoPresolver interface can be used to define actions that are applied to
Pyomo models before they are handed to solvers. Pyomo current defines presolve plugins
that standardize variable names, identify active variables, and collect linear terms.

3.3 Example: A p-Median Solver

A natural extension of Coopr is the integration of domain-specific heuristics. Pyomo models
provide an intuitive interface for accessing model data and variables. Consequently, we
expect that users will develop heuristics directly in Python. As we shall see, setting up
and applying this type of solver can be done quite naturally with the pyomo command-line
interface.

Figure 3.1 describes a plugin that implements the IOptSolver interface. This plugin
implements a solve method, which performs a greedy search for p-median optimization
problems.! The only other step that is needed to use Coopr’s SolverRegistration function,
which associates the solver name, greedy, with the plugin class, MySolver.

Activating this plugin simply requires importing the Python module that contains it.
All other registration is automated within Coopr. For example, if this plugin is in the file
solver.py, then the following Python script can be used to allocate and apply this solver
to Coopr’s p-median example:

import coopr.opt
import pmedian
import solver

instance=pmedian.model. create ('pmedian.dat)
opt = coopr.opt.SolverFactory (’greedy’)
results = opt.solve(instance)

print results

The pyomo command-line interface can also be used to apply a custom optimizer in a
natural manner. The following command-line is used to solve the Coopr’s p-median example
with the cbc integer programming solver:

pyomo —solver=cbc pmedian.py pmedian.dat

Applying the custom solver requires the specification of the solver name, greedy, and indi-
cating that the solver.py file should be imported before optimization:

pyomo —solver=greedy —preprocess=solver.py pmedian.py pmedian.dat

IThe details of the greedy search are omitted here due to space constraints. This example is provided in
with the Coopr examples: coopr/examples/pyomo/p-median/solver.py.

21

Imports from Coopr and PyUtilib
from coopr.pyomo import x

from pyutilib.plugin.core import x
from coopr.opt import x

class MySolver(object):

Declare that this is an IOptSolver plugin
implements (IOptSolver)

Solve the specified problem and return
a SolverResults object
def solve(self, instance, sxkwds):

print 7" Starting._greedy_heuristic”

val , instance = self. _greedy (instance)
n = value(instance.N)

Setup results

results = SolverResults ()
results.problem.name = instance .name
results.problem.sense = ProblemSense. minimize
results.problem.num_constraints = 1
results.problem.num_variables = n
results.problem.num_objectives = 1
results.solver.status = SolverStatus.ok
soln = results.solution.create ()

soln .value = val

soln .status = SolutionStatus.feasible

for j in range(1,n+1):
if instance.y[]j].value is 1:
soln.variable [instance.y[j].name|] = 1
return results

Perform a greedy search
def _greedy(self, instance):
Details omited here. ..

return |[best, instance]

Register the solver with the name ’greedy’
SolverRegistration (” greedy” , MySolver)

Figure 3.1: A simple customized solver for p-Median problems.

22

Thus, the user can develop custom solvers in Python modules, which are tested directlying
using the pyomo command-line interface.

3.4 Deploying Plugin Packages

3.4.1 Background

The Python setuptools package is the de facto standard for deploying Python software.
This package extends Python’s distutils functionality. A key element of this extension
is the easy_install command, which allows the installation of Python software from re-
mote repositories. In particular, the Python Package Index (PyPI) provides a convenient
repository for hosting Python packages. The easy_install command can easily upload and
download packages from PyPI, thereby simplifying the distribution of Packages like Coopr,
which depends on a variety of freely available packages.

Coopr’s Python software architecture leverages features of the setuptools package to
facilitate the integration of Python packages that contain plugin components. Here are the
details:

e The coopr.plugins subpackage is a namespace package. Namespace packages are a
mechanism for splitting a single Python package across multiple directories on disk.
This allows different Python packages to provide plugin components in separate plugin
subpackages (e.g. coopr.plugins.mine and coopr.plugins.yours).

e Subpackages in Coopr have been setup to dynamically load plugins that are registered
in coopr.plugins packages. This leverages the pkg_resources package that included
with setuptools by defining entry points for the Python packages that are loaded
under the coopr.plugins namespace.

Although configuring Coopr to leverage these capabilities requires some black magic, we
hope that Coopr developers will not need to delve into the details of this mechanism. The
following section provides some guidelines for configuring a package such that its plugin
components are automatically loaded when Coopr is imported.

3.4.2 Example: coopr.plugins.neos

The coopr.plugins.neos package is hosted by the Coopr Forum repository [1], which fa-
cilitates community involvement in Coopr. Coopr Forum allows people to contribute code
extensions and plugins without going directly through the Coopr software repository. The
coopr.plugins.neos package provides a simple example of how Coopr can be extended
with plugins to enable optimization on the NEOS optimization server [2].

This package illustrates the basic organization that is needed to seamlessly integrate
plugins from external software packages with Coopr. There are a variety of important details,
which we enumerate in the following sections.

23

Directory Structure

The trunk version of the coopr.plugins.neos package is available at
http://coopr-forum.googlecode.com/svn/neos/trunk/. This package has the following
directory structure:

setup . py

coopr/

coopr/ __init__.py
coopr/plugins/
coopr/plugins/__init__.py
coopr/plugins/neos/

coopr/plugins/neos/ __init__.py
coopr/plugins /neos/NEOS. py
coopr/plugins/neos /NEOS CBC. py
coopr/plugins/neos/kestrel .py
coopr/plugins /neos/kestrel _plugin .py

A key aspect of this directory structure is that it mimics the structure in Coopr. Fur-
ther, the files coopr/__init__.py and coopr/plugins/__init__.py must have the following
definitions to ensure that coopr.plugins is a namespace package:

this 1s a mamespace package
try:
import pkg resources
pkg_resources.declare_namespace (__name__)
except ImportError:
import pkgutil
__path__ = pkgutil.extend_path(__path__, __name__)

Plugin Modules

There are few restrictions on the content of the modules in coopr/plugins/neos. However,
automatic loading of plugin components requires that their associated Python modules are
imported by coopr/plugins/neos/__init__.py. In this package, plugin components are
defined in the kestrel plugin.py and NEOS_CBC.py modules, which are imported by the
__init__.py module.

Package Configuration

The setuptools package uses the setup.py module to configure the installation of
coopr.plugins.neos. Figure 3.2 contains the listing of this file. Only a handful of these
arguments are specific to an installation with setuptools:

24

e The packages options lists all package directories that are included in this package.

e The namespace_packages options lists all package directories that are namespace pack-
ages. There are two namespace packges in Coopr that need to be specified: coopr and
coopr.plugins.

e The entry_points option specifies how components of this package are registered
with setuptools. The entry_points option specifies a dictionary. The keys of this
dictionary are group mames that specify a set of related entry points. Coopr uses this
dictionary to load packages that have been installed with setuptools. By convention,
Coopr packages load plugins with the same group name; for example, the coopr.opt
package imports entry points with the 'coopr.opt’ group name.

As this example illustrates, an entry point relates an entry name with a package in the
software repository. Although these entry names must be unique, Coopr does not rely on
them having any particular syntax or semantics. Instead, Coopr simply loads each entry
point within a given group. This triggers the registration of plugin components within
Coopr, which is the desired result.

Uploading Package Releases

Once your Python package is ready for a release to other users, you can upload it to the
PyPI repository using the following command:

python setup.py sdist upload —s

Note that before you upload the first time you will need to register your package with the
following command:

python setup.py register

25

from setuptools import setup, find_packages

classifiers = """\

Development._Status.:: .3_.—_Alpha
Intended . Audience.:: .End._Users/Desktop
Intended - Audience.:: _Science/Research
License.:: _OSI_Approved.:: _BSD_License

Natural _Language.:: _English

Operating .System.:: .Microsoft.:: _-Windows
Operating _.System.:: _Unix

Programming._Language. :: _Python
Topic.::_.Scientific/Engineering.:: _Mathematics
Topic.:: .Software_Development._:: _Libraries.:: _.Python_.Modules

299

import coopr.plugins.neos

doclines = coopr.plugins.neos. __doc__.split(”\n”)
setup (name = ”coopr.plugins.neos”
version = coopr.plugins.neos.__version__
maintainer = coopr.plugins.neos.__maintainer__,
maintainer_email = coopr.plugins.neos.__maintainer_email__,
url = coopr.plugins.neos. __url__
license = coopr.plugins.neos. __license__ ,
platforms = [7any”],
description = doclines [0],
classifiers = filter (None, classifiers.split(”\n”)),
long description = ”\n”.join (doclines [2:])
packages = [’coopr’, ’coopr.plugins’, ’coopr.plugins.neos’],
keywords = [optimization’],
namespace_packages=[’coopr’, ’'coopr.plugins’],

entry_points = {
"coopr.opt’: |
"solvermanager .neos._=_.coopr. plugins .neos. kestrel _plugin ’,
"solver .neos_cplex._=.coopr.plugins.neos.NEOS CPLEX" |

]
I

install requires=["Coopr>=1.2"]

)

Figure 3.2: The setup.py file used by coopr.plugins.neos.

26

Acknowledgements

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy’s National Nuclear Security Admin-
istration under Contract DE-AC04-94-AL85000.

27

28

Bibliography

Coopr forum. http://code.google.com/p/coopr-forum/, 2009.

E. D. DorLaN, R. FOURER, J.-P. Goux, T. S. MUNSON, AND J. SARICH, Kestrel:

An interface from optimization modeling systems to the NEOS server, INFORMS Jour-
nal on Computing, 20 (2008), pp. 525-538.

Envisagecore. https://svn.enthought.com/enthought/wiki/EnvisageThree/core.
html, 2009.

J. C. MEZA, OPT++: An object-oriented class library for nonlinear optimization, Tech.
Rep. SAND94-8225, Sandia National Laboratories, 1994.

PyUtilib optimization framework. http://software.sandia.gov/pyutilib, 2009.
Sprinklespy. http://termie.pbworks.com/SprinklesPy, 2009.

Trac component architecture. http://trac.edgewall.org/wiki/TracDev/
ComponentArchitecture, 2009.

Trac. http://trac.edgewall.org/, 2009.
yapsy. http://yapsy.sourceforge.net/, 20009.

Zope. http://www.zope.org/, 2009.

29

