The mmap_traits class holds information relevant to mmapping data. The only value currently stored is type which is a unique unsigned integer value representing a specific data type.

The class mmap_base_types represents the base types that are used to build data structure types for mmap_traits. The values of mmap_base_types should be in the range [0, 127] or use 8 bits. These types represent the subtypes of the data structures. For example, if a user needs to mmap an array of Thing, where Thing is a struct, the user can define mmap_base_types<Thing>::type to be 21 in their code. The values [0,20] are reserved for fundamental types. The values [21, 127] are available for user-defined base types.

One thing to note is that the base types must be trivially constructed and destructed and copyable using memcpy().

The least significant 8 bits indicate data structure type such as array, xmt_hash_table, or compressed_sparse_row_graph. This allows 256 major types. The remaining 56 bits can be used to further distinguish the data structure type however is needed. For instance, a hash table can use the remaining bits to give the types of its key and value. Typically, the definitions will be done using the mmap_base_types class to give the types of the pieces of the major type. The values [0,20] are reserved for MTGL data structures. The values [21, 127] are available for user-defined data structures.

The constant detail::MMAP_TYPE_NOT_DEFINED has a value of 0. This is the default value for a type that hasn’t defined mmap_traits<>::type. A type that has this value should not be mmapped.

The following table describes the values of the least significant 8 bits of the mmap_traits<>::type.

	Value
	Description

	0
	Invalid data structure type.

	1
	C-style array

	2
	dynamic_array

	3
	xmt_hash_table

	4
	xmt_hash_set

	5
	compressed_sparse_row_graph

	6
	adjacency_list

	7
	stinger_graph_adapter

	8 – 20
	Values reserved for future data structure types in MTGL

	21 – 127
	Values available for user-defined data structure types.

The following table gives the values for mmap_base_types<>::type.

	Value
	Description

	0
	Invalid base type.

	1
	void

	2
	bool

	3
	char

	4
	signed char

	5
	unsigned char

	6
	wchar_t

	7
	Reserved for char16_t.

	8
	Reserved for chare32_t.

	9
	short

	10
	unsigned short

	11
	int

	12
	unsigned int

	13
	long

	14
	unsigned long

	15
	long long

	16
	unsigned long long

	17
	float

	18
	double

	19
	long double

	20
	Reserved.

	21 – 127
	Values available for user to define own base types.

[bookmark: _GoBack]As an example of a data structure type, I’ll explain the mmap_traits<compressed_sparse_row_graph>::type. The least significant 8 bits are set to 5 to indicate a compressed_sparse_row_graph. The next least significant 8 bits are the direction_type. The next least significant 8 bits are the base type of the VertexProperty. The next least significant 8 bits are the base type of the EdgeProperty. The next least significant 8 bits are the base type of the Vertex. The next least significant 8 bits are the base type of the SizeType. So, compressed_sparse_row_graph uses 48 bits to fully distinguish its mmap_traits<>::type.

