[bookmark: _GoBack]DatabaseDesign: Review with Brian, Mike, Laura, Mohamed, Patty, Bill; December 5, 2012
Review key design notes at: https://software.sandia.gov/trac/dakota/wiki/DatabaseDesign
Initially not focused on evaluation data, just on summary results data, possibly run configuration data like version, input echo, date, for archival purposes.
Conducted review of various Dakota output. See files on rem: DataInSummaryOutput.txt and DataTypes.txt
Initial design focused on two key use cases, only allowing global toggle of output:
· Iterator results output
· LHS Sampling
· Optimization: single and hybrid
· Algorithm with nesting or helper iterator
· PCE out-of-core: too challenging. For now, can save stats during compute and load back during print, but can’t free memory. Recommend considering boost::serialization for this purpose.
· NonDSampling out-of-core: Demonstrated saving moments during run phase and printing during post_run phase.
Required:
· Allow core (essentially map storing boost::any) and/or file (planning HDF5, can also be used in-core) option; for now core duplicates memory of results (until I trust myself)
· Ability to dump in-core to file when complete (not support streaming for now), including to YAML
· Handle user-specified vs. lightweight constructed methods
· Handle multiple runs of the same iterator
Key Storage Concepts
· There is a tension between being hierarchical/grouping and being able to effectively stored contiguous data or use of compound data types
· Current storage Keys and example
· ResultsKeyType (actually a boost::tuple, but API uses a pair)
· < <string , size_t >, string >
· < <iterator_name, exec_id>, data_name >
· < <“optpp_q_newton::NLP_1”, 2>, “Best Responses”>
· < <“nond_sampling::”, 45>, “Simple Correlations”>
· The storage keys lend themselves to hierarchy for use in HDF5 or other output, but tried not to promote arbitrary depth, for usability (though it’s allowed)
optpp_q_newton/
 NLP_1/
 Run 1/
 Best Responses/
 Set 1/
 Set 2/
 Run 2/
 Best Responses/
 Set 1/
 Set 2/

· Current storage Values:
· Data (scalar, vector, containers of those, RealSymMatrix, etc.)
· Array of Data, e.g, data per response function or per optimization results set. This allows us to allocate (out of core) an array of PCE coefficients, one entry per response function, but get random access to them. Example:
 Moments[i] = RealVector(4)
 Moments[i] = [mu, sigma, sk, kurt]
allows per-function insertion/retrieval of moments instead of contiguous memory
· IteratorAnyDB also supports meta data, though not currently in use. The full value type is:
· ResultsValueType
· <boost::any, MetaDataType>
· <boost::any, map<string, vector<string> > >
· An example might be labels for [mu, sigma, sk, kurt] vs. [cm1, cm2, cm3, cm4]

Classes and Interfaces:
· ResultsManager: manages in-core and file based databases under the hood
· Post data to ResultsManager through API using concrete types
· Under the hood, gets stored in boost::any or passed to file
· ResultsEntry: used to retrieve a results from the database
· If in-core active, manages a reference to the stored data
· If not, loads from file and manages a reference to a contained data object
· Allows retrieval of a single entry in an array to support per-function restore of data
· Show code in DakotaOptimizer, NonDSampling
