
EPA 600/R-08/040 | Dec 2008 | www.epa.gov/ord

USER’S MANUAL

CANARY 4.0.0

by
D.B. Hart and S.A. McKenna

National Security Applications Department
Sandia National Laboratories
Albuquerque, NM 87185-0751

CANARY
D.B.Hart, K.A.Klise, S.Martin, S.A.McKenna, E.D.Vugrin, M.P.Wilson

Sandia National Laboratories
Albuquerque, NM 87185-0751

Project Officer:
REGAN MURRAY

NATIONAL HOMELAND SECURITY RESEARCH CENTER
OFFICE OF RESEARCH AND DEVELOPMENT

U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OH 45268

1

www.epa.gov/ord

The U.S. Environmental Protection Agency (EPA) through its Office of Research and Develop-
ment funded and collaborated in the research described here under an Inter-Agency Agreement
with the Deparment of Energy’s Sandia National Laboratories (IAG # DW8992192801). This
document has been subjected to the Agency’s review, and has been approved for publication as
an EPA document. EPA does not endorese the purchase or sale of any commercial products or
services.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Accordingly, the United States Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or allow others to
do so for United States Government purposes. Neither Sandia Corporation, the United States
Government, nor any agency thereof, nor any of their employees makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately-owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by Sandia Corporation, the
United States Government, or any agency thereof. The views and opinions expressed herein do
not necessarily state or reflect those of Sandia Corporation, the United States Government or
any agency thereof.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National Nuclear Security Administration
under Contract DE-AC04-94-AL85000.

Questions concerning this document or its application should be addressed to:

Regan Murray
USEPA/NHSRC (NG 16)
26 W Martin Luther King Drive
Cincinnnati OH 45268
(513) 569-7031
Murray.Regan@epa.gov

2

RMURRAY1
Highlight

Forward

In July of 1970, the White House and Congress worked together to establish the United States
Environmental Protection Agency (EPA) in response to the growing public demand for cleaner
water, air, and land. The Agency was assigned the daunting task of repairing the damage already
done to the natural environment and establishing new criteria to guide Americans in making a
cleaner environment a reality. Since 1970, EPA has worked with federal, state, tribal, and local
partners to advance its mission to protect human health and the environment.

EPA leads the nation’s environmental science, research, education and assessment efforts. With
more than 17,000 employees across the country, EPA works to research, develop and enforce reg-
ulations that implement environmental laws enacted by Congress. In recent years, between 40
and 50 percent of EPA’s enacted budgets have provided direct support through grants to State
environmental programs. At laboratories located throughout the nation, the Agency works to
assess environmental conditions and to identify, understand, and solve current and future envi-
ronmental problems. The Agency works through its headquarters and regional offices with over
10,000 industries, businesses, nonprofit organizations, and state and local governments, on over
40 voluntary pollution prevention programs and energy conservation efforts.

Under existing laws and recent Homeland Security Presidential Directives, EPA has been called
upon to play a vital role in helping to secure the nation against foreign and domestic enemies. The
National Homeland Security Research Center (NHSRC) was formed in 2002 to conduct research
in support of EPA’s role in homeland security. NHSRC research efforts focus on five areas: water
infrastructure protection, threat and consequence assessment, decontamination and consequence
management, response capability enhancement, and homeland security technology testing and
evaluation. EPA is the lead federal agency for drinking water and wastewater systems and the
NHSRC is working to reduce system vulnerabilities, prevent and prepare for terrorist attacks,
minimize public health impacts and infrastructure damage, and enhance recovery efforts.

This Users Manual for the CANARY software package is published and made available by EPA’s
Office of Research and Development to assist the water community by improving the security of
our Nation’s drinking water.

Jonathan Herrmann, Director

National Homeland Security Research Center
Office of Research and Development
U. S. Environmental Protection Agency

3

License Notice

CANARY is Copyright 2007 Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000
with Sandia Corporation, the U.S. Government retains certain rights in this software.

The “library” refers to the CANARY software, both the executable and associated source code.
This library is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

A copy of the GNU Lesser General Public License is included in the library and contained in
Appendix D.1 of this User’s Manual; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA.

MATLAB R©. Copyright 1984 - 2007 The MathWorks, Inc.

The use and distribution of the MATLAB Component Runtime (MCR) Libraries are subject to
the MATLAB Deployment Addendum to the MATLAB license. The license file provided must
remain with the MCR Libraries. Please see license file and/or the MATLAB license at http:
//www.mathworks.com/license/.

4

http://www.mathworks.com/license/
http://www.mathworks.com/license/
RMURRAY1
Note
Should this be "The CANARY library"? I just want to distinguish between the UM and the software here, and in the next paragraph you use library to describe the software.

RMURRAY1
Note
remove "you"
"it can be redistributed and/or modified under the ..."

RMURRAY1
Note
again remove "your"
it is too informal

RMURRAY1
Note
Please add a sentence here saying that the CANARY software uses the MATLAB library which has a separate user license.

Acknowledgements

The National Homeland Security Research Center would like to acknowledge the following orga-
nizations and individuals for their support in the development of the CANARY User’s Manual
and/or in the development and testing of the CANARY Software.

Office of Research and Development - National Homeland Security Research Center

John Hall
Robert Janke
Regan Murray
Terra Baranowski
Srinivas Panguluri (Shaw Group Inc.)

Office of Water - Water Security Division

Steve Allgeier
Mike Henrie
Katie Umberg

Sandia National Laboratories

David Hart
William Hart
Katherine Klise
Sean McKenna
Eric Vugrin
Mark Wilson
Laura Cutler
Marguerite Sorensen

American Water Works Association Utility Users Group

Kevin Morley (AWWA)
David Hartman (Greater Cincinnati Water Works)
Yeongho Lee (Greater Cincinnati Water Works)
Dan Quintanar (Tucson Water)

5

RMURRAY1
Note
Sri should be listed separately as he is not an employee of ORD.

Contents

1 Introduction 11

1.1 Installation . 12

1.2 Running CANARY . 13

2 Design 16

2.1 Off-line Mode . 16

2.2 On-line Mode . 17

2.3 Event Detection Algorithms . 17

2.3.1 Terminology . 18

2.4 Water Quality Estimation and Residual Classification . 21

2.4.1 Normalization Window . 22

2.4.2 Linear Filter Prediction (LPCF) . 22

2.4.3 Multivariate Nearest Neighbor (MVNN) . 22

2.4.4 Using an External Function (JAVA) . 23

2.4.5 Combining Estimation Restuls (CONSENSUS) . 23

2.5 Water Quality Event Determination . 23

2.5.1 Binomial Event Discriminator (BED) . 23

2.5.2 Water Quality Pattern Matching . 24

3 CANARY Inputs 29

3.1 Column-based Inputs . 29

3.1.1 CSV Files . 30

3.1.2 Field Based Databases . 30

3.2 XML Based Input . 30

3.3 EDDIES Databases . 30

6

3.4 Native CANARY Data Files . 31

4 CANARY Outputs 32

4.1 Console Output . 32

4.2 Files Created . 33

4.3 Database Output . 34

4.4 EDDIES and XML outputs . 34

5 Configuration Details 35

5.1 Basic Configuration Options . 37

5.1.1 The run-mode tag . 37

5.1.2 The data-dir tag . 37

5.1.3 The log-file tag . 38

5.1.4 The classpath tag . 38

5.2 Input, Output and Message Options . 38

5.2.1 The datasource tag . 38

5.2.2 The messaging tag . 41

5.2.3 The input-options and output-options tags . 41

5.2.4 The timing-options tag . 41

5.3 SCADA and Monitoring Options . 42

5.3.1 The general-settings tag . 43

5.3.2 The signal tag . 43

5.3.3 The algorithm tag . 46

5.3.3.1 The use-algorithm tag . 46

5.3.3.2 The clustering tag . 46

5.3.4 The location tag . 47

5.3.4.1 The use-input and use-output tags . 47

5.3.4.2 The use-signal tag . 47

7

5.3.4.3 The use-algorithm tag . 47

5.4 Sample Configuration Files . 48

6 Training CANARY and Choosing Parameter Settings 49

6.1 Training Steps . 49

References 51

Appendix

A EDDIES Integration 52

A.1 EDDIES Databases . 52

A.2 EDDIES Database Configuration Entries . 52

A.3 Algorithm Configuration through EDDIES . 53

B XML Messaging Systesm 54

C Java Algorithm Plugin API 55

D License Agreements 57

D.1 GNU Lesser General Public License . 57

D.2 MATLAB Software License . 60

E Database Checklist 75

F Sensor Configuration Checklist 76

8

List of Figures

1.1 Screen-shot of CANARY startup. 14

1.2 CANARY in real-time mode . 15

2.1 An overview of CANARY’s operation in off-line mode. 18

2.2 An overview of CANARY’s operation in on-line mode. 19

2.3 How CANARY fits into a water-quality monitoring system. 20

2.4 An example signal with terminology . 26

2.5 A two signal MVNN example . 27

2.6 Flow diagram for creating the water quality pattern library. 28

9

List of Tables

3.1 Acceptable values for the input-modes parameter . 29

3.2 Sample CSVCOL data . 30

4.1 Acceptable values for the input-modes parameter . 32

A.1 Sample EDDIES input data . 52

10

1 Introduction

Contamination warning systems (CWSs) have been proposed as a promising approach for reduc-
ing the risks associated with contamination of drinking water. In order to maximize detection
likelihoods, CWSs can incorporate multiple detection technologies, such as on-line continuous
water-quality monitoring, public health surveillance, physical security monitoring, and customer
complaint surveillance. The goal of a CWS is to detect contamination incidents in drinking water
systems rapidly enough to allow for the effective mitigation of adverse public health and eco-
nomic impacts. In 2006-2010, the U. S. Environmental Protection Agency (EPA) is deploying and
evaluating CWSs at a series of drinking water utilities.

With current technology, the on-line monitoring component of a CWS is based on available water
quality sensors that measure, for example, free chlorine, total organic carbon, electrical conduc-
tivity, oxidation-reduction potential, and pH. Recent research has shown that many contaminants
of concern will cause detectable changes in these water quality parameters ((Hall et al., 2007), (US
EPA, 2005)). However, these parameters are known to vary considerably over time in water dis-
tribution systems due to normal changes in the operations of tanks, pumps, and valves, and daily
and seasonal changes in the source and finished water quality, as well as fluctuations in demands.

Data analysis tools are needed to distinguish between normal variations in water quality and
changes in water quality triggered by the presence of contaminants. Often referred to as event
detection software (EDS), such data analysis tools can read in SCADA data (water quality signals,
operations data, etc.), perform an analysis in near real-time, and then return the probability of a
water quality event occurring at the current time step. A water quality event is defined as the
period in time within which water of unexpected characteristics occurs. The CANARY software
described here provides this continuous measureof the probability of an event.

The goal of CANARY is to take standard water-quality data and use statistical and mathematical
algorithms to identify the onset of periods of anomalous water quality, while at the same time,
limiting the number of false alarms that occur. The working definition of “anomalous” can be
set by the user by selecting the configuration parameters. These parameters may vary from one
utility to the next and may even vary across monitoring stations within a single utility. CANARY
can be set up to receive data from a SCADA database, and return alarms to the SCADA system.
In addition, it can be run on historical data to help set the configuration parameters in order to
provide the desired balance between event detection sensitivity and false alarm rates.

CANARY is designed to be extensible, allowing outside researchers to develop new algorithms
that can be added to CANARY. In this version, there are two change detection algorithms within
CANARY: a linear filter and a multivariate nearest-neighbor algorithm. There is also the ability
to use a Java class to write ones own algorithm. These algorithms identify a background water
quality signature for each water quality sensor and compare each new water quality measurement
to that background to determine if the new measurement is an outlier (anomalous) or not.

The definition of the water quality background is updated continuously as new data become avail-
able. A binomial event discriminator (BED) examines multiple outliers within a prescribed time
window to determine the onset of either an anomalous event or a change in the water quality

11

tbaranow
Highlight

RMURRAY1
Note
Check that this is still correct: two algorithms.

RMURRAY1
Note
"to add additional algorithms"

baseline. Information on the development of the three event detection algorithms can be found in:
(McKenna et al., 2006) (time series increments and linear filter), (Klise and McKenna, 2006a; Klise
and McKenna, 2006b) (multivariate nearest neighbor), and (Hart et al., 2007), (McKenna et al.,
2007) (binomial event discriminator).

A new addition to CANARY is a water quality pattern matching capability. Changes in utility
operations often create changes in the water quality within the distribution network and these
changes can produce false alarms in EDS tools. In many cases, these water quality changes occur
on a daily basis, although they do not occur at exactly the same time or produce exactly the pattern
from one day to the next. Pattern matching in CANARY is designed to work with historical data
from a monitoring station and identify recurring patterns in those data. CANARY allows the user
to select the water quality changes that should be included in a pattern library. The stored patterns
are multivariate including all water quality monitoring signals and a clustering algorithm is used
to summarize the various changes in water quality with a reduced parameter set. The changes in
the various water quality signals are conceptualized as series of points linked in time that define a
trajectory and a trajectory clustering approach [Gaffney, 2004] employing fuzzy c-means clustering
[Dunn, 1973; Bezdek, 1981] is used within CANARY. Identification of recurring patterns in data
sets can significantly reduce the number of false alarms.

To be useful to water utilities, event detection systems must have low false positive rates, high
detection likelihoods, and be sufficiently reliable. The CANARY software is being released to
the public in order to promote widespread development and testing of event detection algorithms
among researchers, consultants, vendors, and utilities. In this way, water utilities will be provided
with high performing tools that can be trusted as part of their daily operations.

The rest of this manual is organized as follows:

• Design – the design section discusses modes of operation and the different algorithms that
can be used in event detection.

• Configuration – this section describes how to configure CANARY for a specific need.

• Inputs and Outputs – these chapters describe how data should be formatted for use by CA-
NARY, and what kind of information will be provided in return.

• Appendices – licenses, checklists, references and other miscellaneous information.

A tutorial is available on-line at the download site: http://www.epa.gov/nhsrc/water/
teva.html

Bugs, issues and comments can be submitted to the address mailto:canary-info@sandia.
gov

1.1 Installation

The following is a step-by-step guide to installing CANARY on a PC running Windows:

1. Create the directory where CANARY will be installed; C:\CANARY\ is good choice.

12

http://www.epa.gov/nhsrc/water/teva.html
http://www.epa.gov/nhsrc/water/teva.html
mailto:canary-info@sandia.gov
mailto:canary-info@sandia.gov
tbaranow
Inserted Text
a

RMURRAY1
Note
The technical description of the approach and these citations should be saved for a later section. This should be reworded for non-technical readers who may only read this introductory section.

2. Download the appropriate file from the website and save it to the CANARY program folder.

3. Double-click the install file; this will unzip the necessary files into the directory and start the
install process.

(a) If the package selected includes the MATLAB Component Runtime installer, this will
automatically start to install; follow the prompts as indicated on the screen.

(b) If the MCR is already installed, nothing else will happen.

4. You are now ready to run CANARY!

1.2 Running CANARY

CANARY is executed by running “CANARY” from the start menu that was created during instal-
lation. A black screen will open first, and then a window will pop up asking what file you would
like to open. See Figure 1.1.

If you are running in “batch” or “training” modes, data will continue to show up in the “CA-
NARY” window in text format. If you are running in “realtime” mode, then another control
window will pop up that will allow you to pause, resume, turn on debugging, or save a current
snapshot. See Figure 1.2

Once you exit CANARY, either by reaching the end of a dataset or pressing “Quit” on the window,
you will see the following messages:

CANARY is shutting down...

Press <ENTER> to exit...

The requirement to press “ENTER” allows any bugs or errors to stay on the screen prior to closing
the main window.

The other method of running CANARY is by using the command prompt and executing the “ca-
nary.exe” command by hand. The syntax for such a command is as follows:

canary.exe configfilename [OPTIONS]

where the options are taken from the following list:

–version, -V prints the version number, then exits.

–debug turns on verbose debugging messages.

–logfile=file identify a specific filename to use for logging.

–datadir=dir use a specific data directory for inputs and outputs.

–eddies use EDDIES defaults (more in Appendix A).

13

RMURRAY1
Inserted Text
http://www.epa.gov/nhsrc/water/teva.html

Figure 1.1. Screen-shot of CANARY startup.

14

tbaranow
Note
Don't know if you want to use a screen capture that displays gcww and nky

RMURRAY1
Note
I agree with Terra's comment. I think you should only show a test case that is included with the release.

Figure 1.2. CANARY in real-time mode

15

2 Design

CANARY moves one step at a time through a data file, or data provided from an online connection
to a SCADA system, and determines whether or not the observed data at the current time step
is consistent with the expected data values. This determination is made by classification of the
residual between the observed and expected data values into either the normal (background) class
or the outlier class. The expected values are derived from a choice of one or more algorithms that
use linear combinations of previously observed data values to estimate the next observed value.
By examining the results of the residual classification over multiple consecutive time steps, the
probability of a water quality event occurring at the current time step is calculated. Changes in
water quality that occur with some regularity, such as those caused by daily changes in utility
operations, can be recorded and stored in a pattern library for future reference.

CANARY has been designed for two different modes of operation: on-line and off-line modes.
The off-line mode uses historical data to analyze algorithm performance given different parameter
settings. On-line mode uses real-time data, typically through connection to a SCADA database,
to do on-line analysis of water quality in a system. While the algorithms operate identically in
both cases, CANARY’s outer control structures are significantly different. Diagrams showing how
CANARY is organized are shown in Figures 2.1 and 2.2.

Parameters, controls and input and output options for CANARY are specified in a configuration
or “config” file. The config file is written in XML and different tag names are used to divide the
file into relevant sections. Some notes on the config file are made in this section, but the majority
of detail on the config file is presented in Chapter 5 of this Users’s Manual.

2.1 Off-line Mode

CANARY was originally designed as an easy way to test different algorithms on large sets of water
quality data. These data sets were generally presented in the form of a spreadsheet or text file, but
occasionally in simple databases. Off-line mode reads in the entire data set and then processes it
one step at a time, as if the data were coming into the system sequentially. It does this without
any delay between one timestep to the next and tracks the time interval that would have occurred
internally. Results are presented on the screen as they are calculated, and they are also saved in
output files. The boxes highlighted in blue in Figure 2.1 indicate the quantities written to output
files and saved from CANARY in offline mode.

Off-line mode also can calculate performance metrics of different algorithms, if “real” event in-
formation is provided with the data. This event data can be real world tracer tests performed in
the field, or simulated events added into background water quality. If records are available, water
main breaks, treatment plant changes, or other occurrences that may effect water quality can be
added in and used as events.

There are three main motivations to use CANARY in off-line mode:

1. Set algorithm parameters for a monitoring station based on historical data that does not
contain any known events. This mode is used to identify the algorithm parameters that

16

tbaranow
Inserted Text
,

RMURRAY1
Highlight

RMURRAY1
Note
Need to define residual

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
A detailed description of the

RMURRAY1
Inserted Text

RMURRAY1
Inserted Text
the feasibility of using

RMURRAY1
Inserted Text
to detect anomalous events

RMURRAY1
Inserted Text
historical

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
s

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
historical

will both create the best estimations of the observed water quality values (minimization of
the residuals between estimated and observed water quality values) and reduce the false
positive event alarms. Currently, this is the most common off-line use of CANARY as it is
necessary to define the correct parameter set for each monitoring station and most historical
data sets do not contain known events.

2. Set algorithm parameters for a monitoring station based on historical data that contains
known events. In order to determine the ability of the algorithm parameters to minimize
the number of missed detection (false negative alarms), it is necessary to have some known
events in the historical data set. Few historical data sets contain known events, and if they do
there are not enough of them to provide the statistical mass necessary for setting algorithm
parameters. So in most cases, the known events in a historical data set must be simulated
and added to the observed water quality data.

3. Identify recurring water quality patterns. CANARY uses a pattern recognition approach
to construct a pattern library from historical data. The patterns represent changes in water
quality that could trigger an alarm under normal operation of CANARY. Once stored in the
library in off-line mode, these patterns can then be compared to any observed water quality
that may trigger an alarm during on-line operation.

2.2 On-line Mode

While event detection on historical data is useful for research and development, an effective event
detection system must be used in real time. Figure 2.2 demonstrates the process flow for running
CANARY in online mode, while figure 2.3 shows how CANARY fits into an overall contaminant
warning system. CANARY’s on-line mode provides this functionality. Multiple stations can be
be monitored simultaneously, and results can be output both to the screen or back to a SCADA
system. Because interfacing an external program to a SCADA system can be challenging, there
are some checklists for a utility’s SCADA manager or contractor in Appendix E. One option for
interfacing CANARY to SCADA is the EDDIES software, which is being developed by CSC and
CH2M Hill for the US EPA Water Security Initiative (WSI) pilot program. At this time, it is unclear
what the deployment future for EDDIES is, and the authors of CANARY are not a direct part of
the project. However, because CANARY has direct interface capability with the EDDIES database
for use in WSI pilots, the functionality will be described in Appendix A. The different methods
to interface directly with SCADA systems without having to rely on interface software such as
EDDIES will be described in the chapter on input options.

2.3 Event Detection Algorithms

This section aims to help the user choose some acceptable starting values for the different al-
gorithm parameters. It is not intended to give full descriptions of the algorithms, or of their
implementations, but rather to give a broad overview of each algorithm and how the different
parameters may impact performance. Each section will include at least one reference to a paper
written by one of the authors on the algorithm in question, and those wanting a more detailed
analysis of the algorithms are encouraged to read the associated papers.

For future releases of CANARY, a tool is being developed that will take a set of “normal” data and
automatically find a set of “good” parameters that an operator could use. Because event detection

17

tbaranow
Highlight
initiative (WSi)

tbaranow
Highlight
WSi

tbaranow
Highlight
This sentence does not seem to flow well. I would not end the first part of the the sentence with "... for EDDIES is, ..."

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
number

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
water utilities need to use

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
and

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
Chapter 3

RMURRAY1
Inserted Text
understand the algorithms well enough to

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
to relevant peer-reviewed publications that can provide additional background on the algorithms.

RMURRAY1
Highlight

RMURRAY1
Note
This paragraph seems out of place. In this chapter you are describing the algorithms, not the config file. I would move this paragraph to a later chapter.

Figure 2.1. An overview of CANARY’s operation in off-line
mode.

systems have an inherent trade off between high sensitivity and the rate of false alarms, each
user must eventually decide what the best parameters will be for a specific use of CANARY. For
example, a researcher may have more tolerance for false alarms while testing her new algorithm
in off-line mode, while a utility operator may not want his system providing false alarms very
often (or, preferably, ever).

2.3.1 Terminology

Because there are many differing opinions on what constitutes an event – intentional contamina-
tion to some, but any abnormal reading to others – it will be helpful to clarify certain terminology
that will be used. An example showing the terms “outlier,” “event,” and “baseline change” is
provided in Figure 2.4.

signal Every data stream is considered a signal. Whether these data are from a water quality
sensor (e.g., chlorine monitor) or a physical measurement of some aspect of the utility oper-
ations (e.g., tank level or a flow rate) at the same monitoring station and represents an actual
physical property, or if it is simply the historical value of the stock market, CANARY’s al-

18

tbaranow
Highlight
a

tbaranow
Highlight

tbaranow
Highlight
I would remove the 'his' reference.

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

Figure 2.2. An overview of CANARY’s operation in on-line
mode.

gorithms treat all signals equally, without any domain knowledge the sensor specifications
entered during configuration are used for preprocessing and don’t enter directly into the
algorithm calculations.

monitoring station A specific location within the network where one or more groups of sensors
are located. Typically, data from a monitoring station are grouped within the SCADA sys-
tem. A monitoring station may be comprised of several sub stations.

sub-station Data from all sensors at a sub-station are processed simultaneously. For example, a
single tank may be designated as a monitoring station. That tank may have several different
outlets and each of those outlets may have water quality sensors. The group of sensors at
each outlet is a sub-station.

residual The difference between the estimated and observed water quality values at a single time
step. The size of the residual is compared to the threshold, τa, for classification as being
indicative of background water quality conditions or of anomalous conditions representing
water quality events. Residuals are both positive and negative indicating under or over-
estimation of the observed water quality. However, only the absolute values of the residuals

19

tbaranow
Cross-Out

tbaranow
Replacement Text
sub-stations

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
in order to determine if the observed water quality is

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
can be

RMURRAY1
Inserted Text
(see below for definition)

Figure 2.3. How CANARY fits into a water-quality monitoring
system.

are used here for comparison to the threshold.

threshold the main threshold used in CANARY is the “yardstick” against which each residual,
the difference between the estimated and observed water quality value, is compared to de-
termine whether or not the current observation is indicative of anomalous water quality.
This threshold value is the key parameter for the residual classification. The threshold is set
in units of standard deviation. The standard deviation is calculated from all previous water
quality data in the normalization window (see below). Setting the threshold as a relative
measure in terms of standard deviations of the previous data allows the absolute value of
the threshold to increase and decrease depending on the variability of the observed data.
Periods of higher background variation will be compared to a higher absolute value of the
threshold and vice versa for periods of lower background variability.

outlier An outlier is defined as a single time step with behavior that is considered anomalous
relative to the background or expected behavior for that time step. Any time-step when one
or more signals deviates from the expected value by more than a certain amount is classi-
fied as an outlier. Each algorithm uses its threshold, τa, to determine when a deviation is
large enough to be called an outlier.. A common cause of outliers is a communication er-

20

tbaranow
Note
 The word description seems a little fuzzy to read.

tbaranow
Cross-Out

tbaranow
Replacement Text
The

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Note
where?

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
data value at a

RMURRAY1
Cross-Out

ror between a sensor and the SCADA system. A large enough number of outliers within a
prescribed time interval may constitute an event. The other result that can occur from the
residual classification is that the current water quality is indicative of background condi-
tions.

event An activity or behavior that is unusual relative to normal modes of operation or abnormal
activity or operation relative to the background or ambient modes of operation. An event
is a sustained period of such abnormal activity that is of a longer duration than an outlier,
but of shorter duration than a baseline change. If more than ne outliers occur in a given
period of time, then CANARY determines that an event has occurred. The binomial event
discriminator, or BED, is the method that is used to decide how many outliers it takes to
create an event. The BED parameters entered by the user define the length of an event.

baseline-change A baseline change is a significant change in a statistical parameter, generally the
mean, of the observed data. Baseline changes are common in some water distribution sys-
tems due to changes in movement of different source waters within the network at different
times of the day. If an event continues for a long enough time, then CANARY decides that
it has found a “baseline-change.” This does not mean that all is well. It simply means that
CANARY has sounded an alarm for a long enough time that two things have happened:

• the operators have listened to the alarm for long enough that they have either identified
the cause or have initiated action to find the cause, and

• it is time to start looking for events within this long event. CANARY’s algorithms are
going to re-calculate what the “normal” background water quality is.

Baseline changes are significant events, because they mean that CANARY will stop sound-
ing an alarm (or printing a message) for this event. Note that a baseline change cannot be
identified without a preceding event being identified. However, not all events will become
baseline changes.

pattern a concise description of the water quality over a series of time steps. This description
can be for one signal (univariate) or multiple signals (multivariate) and would typically
contain a significant change in or more of the water quality signals. The pattern description
is generally reduced to a small number of regression coefficients.

2.4 Water Quality Estimation and Residual Classification

This section aims to help the user choose some acceptable starting values for the different algo-
rithm parameters. It is not intended to give full descriptions of the algorithms, or of their imple-
mentations, but rather to give a broad overview of each algorithm and how the different param-
eters may impact performance. Each section will include at least one reference to a paper written
by one of the authors on the algorithm in question, and those wanting a more detailed analysis of
the algorithms are encouraged to read the associated papers. It is noted that the residual classifi-
cation results from several algorithms can be joined together to provide a final determination as
to whether or not water quality at the current time step represents background conditions or an
outlier.

For future releases of CANARY, a tool is being developed that will take a set of “normal” data
and automatically find a set of “good” parameters that an operator could use. Because event

21

tbaranow
Cross-Out

tbaranow
Replacement Text
one?

tbaranow
Highlight
This sentence is difficult to read. There are too many or's.

tbaranow
Highlight

tbaranow
Highlight
If the previous word was one, then outliers should be single (outlier).

tbaranow
Highlight

tbaranow
Cross-Out

tbaranow
Highlight

tbaranow
Cross-Out

tbaranow
Replacement Text
A

tbaranow
Highlight
These sentences are repeats of ones earlier.

tbaranow
Highlight

tbaranow
Highlight
Repeat

RMURRAY1
Note
and this is determined by the Binomial Event Discrimator (see Section 2.5.1).

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
flow

RMURRAY1
Inserted Text
specified by what parameter?

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
This

RMURRAY1
Note
This definition is very confusing. It should be made more succinct and perhaps provide a forward reference to a later discussion or example cases.

RMURRAY1
Inserted Text
one

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Note
This section describes how CANARY uses water quality signals to estimate values for the next time step and calculate and classify residuals.

detection systems have an inherent trade off between high sensitivity and the rate of false alarms,
each user must eventually decide what the best parameters will be for a specific use of CANARY
at a given monitoring station. For example, an analyst may have more tolerance for false alarms
while testing her new algorithm in off-line mode, while a utility operator may not want his system
providing false alarms very often (or, preferably, ever).

2.4.1 Normalization Window

Because the signals that CANARY operates on are of different magnitudes and measured in differ-
ent units (e.g., mg/l, NTU, pH,etc.), it is necessary to find a way to make them comparable to each
other; this is accomplished by normalizing the data across a certain window. The window param-
eter in the <algorithm> configuration tag, nh, controls how much of the recent data are included
in the normalization window. The historical data, Xh, are then normalized by the mean, x̄, and
standard deviation, σx, to obtain the normalized data, Xs. This operation is shown in Equation 2.1.

Xs =
Xh − x̄

σx
(2.1)

and results in a data set of length nh with a mean near 0.0 and a standard deviation near 1.0.
As CANARY steps through each new time step, the newest observed data are normalized using
the same mean and standard deviation. The new data rea added to the window and the oldest
data point is removed from the window and the normalization is done again for the data now
contained in Xh. After this normalization, the algorithms can apply the same threshold to all
available signals.

2.4.2 Linear Filter Prediction (LPCF)

The “LPCF” or “LPC” algorithm uses digital filtering along with linear coefficient estimation to
predict what the newest observation should be based on the trends of the data in the history
window. The estimation of the next water quality value is a weighted average of the previous
values contained in Xs. The linear coefficients provide the weight for each previous alue and
are updated at every time step to adapt to changing background water quality variation. The
coefficient calculations are formulated to provide estimates that are unbiased and have minimum
variance. The algorithm uses the filter and lpc functions from MATLAB, a description of which
can be found in (MathWorks, 2002), or in (McKenna et al., 2006). The threshold, τa, refers to the
maximum error allowed, in units of standard deviation, between the estimated data values for
this time step and the observed data values. Typical values for τa may range from as low as 0.5σ,
for stations with very stable water quality, up to 1.5σ at stations where mixing of different source
water occurs.

2.4.3 Multivariate Nearest Neighbor (MVNN)

The multivariate nearest neighbor algorithm is accessed by selecting “MVNN” as the mFile param-
eter for an algorithm. This algorithm compares the newest observed water quality data against all
the data that are in the history window. After the data are normalized, each signal – pH, Chlorine,
etc. – is used to locate the historical data in multivariate space. In a two signal example, these data
create a series of points in 2-D space. Then, the newest observation is plotted against the others.

22

tbaranow
Highlight
Repeat

tbaranow
Highlight
?

tbaranow
Cross-Out

tbaranow
Replacement Text
value

tbaranow
Highlight
This is not mentioned in regard to the LPC.

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Note
Given that you have not yet discussed the xml config file, the reference to tags is confusing.

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
A window of time steps, specified by the parameter n_h, determines the number of time steps included in the normalization of the data.

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
the data in the new window is normalized again to create a new mean and standard deviation.

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
The normalized water quality data are mapped in multivariate space.

The residual is how far this new point is from the closest historical data point. The threshold,
τa, for this algorithm becomes the farthest away, in units of standard deviation, the newest data
point can be from the nearest historical data point. An illustration is shown in Figure 2.5. The
MVNN algorithm works for any number of signals and, in contrast to the LPCF algorithm, only
one residual value is calculated for the MVNN algorithm for each time step no matter how many
signals are used as input. Additional information is available on the MVNN algorithm in (Klise
and McKenna, 2006a) and (Klise and McKenna, 2006b). Typical values for τa range from 1σ to 3σ.

2.4.4 Using an External Function (JAVA)

By specifying an algorithm of type “java,” a pre-compiled Java-based algorithm can be used in-
stead of the internal algorithms. This algorithm must conform to a certain API to allow for the
proper calls and data passing between the main control loop and the user-provided code. This
API is provided in Appendix C of this document, and a sample source file is included with the
CANARY executable.

2.4.5 Combining Estimation Restuls (CONSENSUS)

CANARY allows for running two or more estimation and residual classification algorithms in par-
allel. For example, both the MVNN and LPCF algorithms could be used on the same data set. The
results of the residual classification from each algorithm are then joined using a consensus scheme
where both of the algorithms have to indicate an outlier for that time step to be classified as such.
Alternately, the probabilities from multiple algorithms can be combined using simple averaging,
with alarms dependent on the total probability exceeding some threshold. These options and how
to configure this algorithm are provided in Chapter 5.

2.5 Water Quality Event Determination

The estimation and residual classification algorithms described above provide a binary determi-
nation at each time step: outlier or background. These results are used as input to two additional
pieces of the water quality event identification: calculation of the probability of a water quality
event at each time step and determination if an observed outlier time step is part of a previously
recognized water quality pattern. Both of these additional processing steps are designed to reduce
the number of false positive alarms produced by CANARY. It is not necessary to use either of these
additional steps if only a binary outlier/background indication of water quality is required; how-
ever, we have found that determination of the probability of an event at each time step provides a
much richer picture of water quality changes within a distribution network and the integration of
results across time steps reduces false positive alarms. For monitoring stations with water quality
changes induced by operations changes (e.g., monitoring stations near a tank that is filled and
drained each day), the pattern matching capability can provide a significant reduction in false
positive alarms.

2.5.1 Binomial Event Discriminator (BED)

The binomial event discriminator is not an event detection algorithm itself, but an algorithm de-
signed to integrate results over multiple time steps to provide the probability of an event and to
help limit the number of false alarms. As described in (McKenna et al., 2007), the BED uses a sep-

23

tbaranow
Cross-Out

tbaranow
Replacement Text
Results

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
the distance from

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
to

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
is

RMURRAY1
Inserted Text
to still be considered part of the background.

arate, smaller history window set as “binom-win-min” in the <algorithm> configuration tag and
containing nb time steps that tracks the recent number of outliers. If the cumulative distribution
function for a binomial experiment where the probability of an outlier occurring at any time step
is pb and with a number of outliers no out of nb trials, exceeds the probability threshold τb, an
event alarm is output. At each successive time step where outliers occur, the event continues and
the length of the binomial window increases by one; when the window size reaches the maximum
allowed, nb + nB, a baseline change is noted, and the BED parameters are reset to begin looking
for new events.

Unlike the individual algorithms, which provide a boolean “above τa” or “below τa” response,
the binomial event discriminator provides the continuous probability that an event has occurred
at each time step. This probability is the value of the binomial cumulative distribution function
binocdf(no, nb, pb).

The values of the minimum and maximum window sizes, nb and nB, are typically chosen for
a specific class of events. For example, if anomalies lasting less than four time steps are not of
interest, nb should be set to be somewhat larger than four, probably six to eight. If operators
believe that two hours is sufficient time to identify the source of an event or decide that an event
is being handled (probably being investigated by another party), then nB should be set to the
appropriate number of time steps to indicate two hours. Because of this, there are no “typical”
values for the binomial event discriminator; however, values that have been seen to work with
real data are provided in the sample configuration files.

2.5.2 Water Quality Pattern Matching

The water quality pattern matching tool uses the idea of trajectory clustering to represent a time-
series of water quality data with a relatively low-order polynomial. Regression models and clus-
tering are used to construct a library of common water quality patterns from historical data. The
library construction process is illustrated in Figure 2.6. The length of the time series in the pattern
is generally limited to less than 100 time steps prior to and including the indication of a water
quality event by CANARY. For example, three signals are being examined and at some point Cl
decreases, pH increases and Conductivity remains constant. The changes in Cl and/or pH are
enough to create an event in CANARY due to P(event) exceeding τb.

Starting at the current time step and looking back nc time steps, a low-order (e.g., 3rd order)
regression model is fit to each signal independently. The fits are done independently on each
signal and in the example case the coefficients will be quite different (decreasing vs. increasing vs.
flat) but the polynomial model applied to all signals must be constant. This process is repeated
for all events that the user deems representative of common water quality patterns. The library of
patterns is stored within a matrix that has one row for each event that was identified by CANARY.
The total number of columns is the order of the polynomial plus one times the number of water
quality signals examined. For example, use of a third-order polynomial for analysis of three water
quality signals will result in 12 columns in the matrix.

Online water quality pattern matching uses the information in the pattern library to discard events
that are indicative of previously identified water quality patterns. In this case, if the pattern falls
closely to a known event (within the 20th percentile, for example), then a message is submitted
that a known event has occurred, and no other alarm is sounded. If no known cluster is similar

24

tbaranow
Highlight
I'm not sure if this should be track or tracks. Does it refer back to the time steps or the BED?

RMURRAY1
Cross-Out

RMURRAY1
Highlight

RMURRAY1
Note
what is this?

enough to the current data, processing continues, and an alarm may be produced.

25

Figure 2.4. An example signal with terminology

26

tbaranow
Note
The figure is really far away from the description/reference text.

tbaranow
Note
I would use a lowercase 'a.'

Figure 2.5. A two signal MVNN example

27

Figure 2.6. Flow diagram for creating the water quality pattern
library.

28

3 CANARY Inputs

As described previously, CANARY works on discrete time-series water-quality data. The data-
interval configuration option, δts, sets the size of the discrete time bins. Ideally, each water-quality
sensor will provide exactly one measurement during this time frame; however, if more than one
reading is collected during a particular interval, only the most recent reading will be used in the
calculations.

Each data value must be associated with four different pieces of data: the date and time of the
measurement, the sensor it came from, the monitoring station it belongs to, and the data value
itself. The date and time are converted into a discrete time index, k; the sensor identifier is used
to identify which data column the value belongs to, with an index j. The location specifies which
data set to access.

There is additional information that may be provided on a real-time basis, such as alarm flags,
quality flags, comments, etc., but the four data pieces described above are the most important
elements of the input data. A table showing the different entry values for the input-mode parameter
is provided as Table 3.1. There are two primary ways these data are organized: column-based
(field-based) and row-based (record-based).

Table 3.1. Acceptable values for the input-modes parameter

Input Mode Brief Description
CSV A text spreadsheet file, in comma-separated-values (CSV)

format, described in section 3.1
EDDIES A record-based database format, with field names defined

by the EDDIES interface; see section 3.3
XML A record-based XML message is used to pass information

from CANARY to a third-party SCADA integration system
DB A field-based database format, as described in section 3.1.2
MAT A binary data file that contains previously entered water

quality data; see section 3.4

3.1 Column-based Inputs

The most frequent use of column based inputs is in text data files used in off-line processing. Each
row in the file corresponds to a single time-index, with the date and time in the first columns. Each
of the additional columns contains the measurement value from a particular sensor and location.
The primary advantage of using this format is that very little data is repeated. The column headers
identifying locations and sensors are specified only once, each date and time is specified only once,
and the rest of the data is very compact numeric values in a large matrix. Text files organized in
this fashion are relatively small and easily opened in spreadsheet applications. Text files use the
input-mode of CSVFILE or its alias CSVCOL.

29

tbaranow
Highlight
column-based to match header title

RMURRAY1
Inserted Text
only required

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
in the config file

RMURRAY1
Inserted Text
in the config file

RMURRAY1
Inserted Text
In this section, the format of the input data needed to run CANARY is discussed.

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
Often, data exported from SCADA systems to data files is in column-based format.

3.1.1 CSV Files

The comma-separated values file format is a standard spreadsheet format. The first row must con-
tain the text headings for each column. The first two columns must be titled “Date” and “Time,”
respectively. The third and fourth columns must contain “Status” information, with numeric val-
ues in the third column and explanations in the fourth column. The remaining columns should
be titled with the “type” of each sensor, which should be the SCADA ID tag, or the unique part
thereof. A sample is shown in Table 3.2.

Table 3.2. Sample CSVCOL data

Date Time St Exp CL2X_V PHXX_V . . .
2006-10-17 00:00:00 0 1.20997 8.54441 . . .
2006-10-17 00:02:00 0 1.21004 8.5468 . . .
2006-10-17 00:04:00 0 1.20995 8.5453 . . .
2006-10-17 00:06:00 0 1.20313 8.55246 . . .
2006-10-17 00:08:00 0 1.2035 8.55227 . . .
2006-10-17 00:10:00 1 Glitch 0.0001 0.0001 . . .
2006-10-17 00:12:00 0 1.20981 8.55224 . . .
2006-10-17 00:14:00 0 1.21669 8.55238 . . .
2006-10-17 00:16:00 0 1.21159 8.55252 . . .
. .

3.1.2 Field Based Databases

Databases can be set up to use column-based, or field-based, formats. In this case, each sensor is
associated with a single field in the database table. In the DATABASE input-mode, the field name
must be the same as the signal “type” specified in the configuration file. The date and time must
be in a field that is specififed in the configuration file. The default is “TimeStep”. This field must
be formatted in standard SQL DateTime format.

3.2 XML Based Input

There is an XML message exchange schema that has been defined by others in the water com-
munity. This message schema is presented in Appendix B, and uses standard TCP/IP sockets to
exchange messages. In this case, the inputs and outputs are on a single data stream, and need only
be defined once in the configuration file (see Chapter 5.

3.3 EDDIES Databases

The EDDIES software is a third party package that was commissioned by the US EPA Office of
Water (OW). EDDIES serves as middle-ware to eliminate the need for a direct connection to the
SCADA database, as is described in Section 3.1.2. EDDIES is further discussed in Appendix A.

30

tbaranow
Cross-Out

tbaranow
Replacement Text
"TimeStep."

tbaranow
Inserted Text
 (CSV)

tbaranow
Cross-Out

tbaranow
Cross-Out

tbaranow
Replacement Text
An

tbaranow
Cross-Out

tbaranow
Cross-Out

RMURRAY1
Inserted Text
)

3.4 Native CANARY Data Files

Because algorithm testing can require a large number of offline runs on the same data sets with
different algorithm settings, the time to input data from a database or text file can become cum-
bersome. To help alleviate this problem, CANARY saves a binary data file after each run that can
be used as future input. Additionally, the SAVEONLY run-mode can be used to convert any of the
input formats described above into a binary data file without doing any algorithm processing.
These files can be used as input using the input mode MAT. This refers to the extension of .mat
that the files have, and that users of MATLAB can load these files and examine them directly in
MATLAB outside of CANARY if they so desire.

Using MAT outputs can speed up off-line processing by a factor of up to ten times. They can also
allow the user to re-run or restart CANARY runs that have crashed or been interrupted. And
the most important part is that they are much smaller than the equivalent text files! Currently,
MAT outputs are saved after every week of data processing, which has been found to be a good
compromise between I/O overhead and data backup.

31

tbaranow
Cross-Out

tbaranow
Highlight

tbaranow
Highlight
Need to be consistent with how off-line is written. It is written as offline above.

RMURRAY1
Cross-Out

4 CANARY Outputs

If CANARY is to function as an event detection tool, then it must provide some indication that
an event has occurred! This is accomplished in several different ways. The primary output is
to the screen where CANARY is running; a message is displayed saying that an event has been
detected, when and where. This information is also copied to the log file. It is likely, however,
that CANARY will be running in the background on its own computer, one which doesn’t have
someone watching it all the time. In this case, CANARY can respond back to the SCADA database
and provide notification that an event has occurred.

For off-line operation, real-time alerts are not as essential. In this case, CANARY provides CSV
file output that lists the date and time of events and which algorithm detected the event. It can
also provide probability of an event at every time-step. Regardless of the mode of operation,
CANARY will always create a .mat binary file that contains a record of all the results that have
been calculated during a particular CANARY run. This file can be loaded directly into MATLAB
by those who have it, or it can be reused as an input to CANARY. The output options are described
in Table 4.1.

Table 4.1. Acceptable values for the input-modes parameter

Output Mode Brief Description
FILES A text spreadsheet file, in comma-separated-values (CSV)

format, described in section 4.2
EDDIES A record-based database format, with field names defined

by the EDDIES interface; see Appendix A.
XML A record-based XML message is used to pass information

from CANARY to a third-party SCADA integration system;
see Appendix B.

DB A field-based database format, as described in section 4.3
MAT A binary data file that contains input and output data

4.1 Console Output

CANARY does not provide console output for every time-step that is processed. Doing so signifi-
cantly increases the processing time for off-line data, and, under normal water quality conditions,
CANARY shouldn’t be reporting anything anyway. However, since it is always nice to know a
program is really working, CANARY does provide a message every day’s worth of time-steps to
let the user know it’s still going.

The messages of most importance are those relating to events. A typical event looks something
like the following.

CANARY has started ...
---- MAIN:info Started location: StationB 01-Dec-2008 10:33:09

32

tbaranow
Cross-Out

tbaranow
Replacement Text
.

tbaranow
Cross-Out

tbaranow
Replacement Text
does not

tbaranow
Cross-Out

tbaranow
Replacement Text
output

tbaranow
Cross-Out

tbaranow
Replacement Text
should not

tbaranow
Cross-Out

tbaranow
Replacement Text
it is

tbaranow
Inserted Text
after

tbaranow
Cross-Out

tbaranow
Replacement Text
running

RMURRAY1
Inserted Text
 in the config file

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
in order to indicate that CANARY is functioning properly

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
 the software is functioning properly.

RMURRAY1
Cross-Out

---- MAIN:info Starting processing 01-Dec-2008 10:33:09
WARN INPUT:STATIONB_IN Unknown signal in CSV file StationB_UPSxON_ALM
---- EDS:info Continuing to process... 07/08/2008 00:00:00
---- EDS:info Continuing to process... 07/09/2008 00:00:00
WARN EVENT:StationB 07/09/2008 08:08:00 LPCF{0.5}:(94.0%)
WARN EVENT:StationB 07/09/2008 08:10:00 LPCF{0.5}:(98.1%)
WARN EVENT:StationB 07/09/2008 08:12:00 LPCF{0.5}:(99.5%)
WARN EVENT:StationB 07/09/2008 08:14:00 LPCF{0.5}:(99.9%)
WARN EVENT:StationB 07/09/2008 08:16:00 LPCF{0.5}:(99.9%)
WARN EVENT:StationB 07/09/2008 08:18:00 LPCF{0.5}:(99.9%)
WARN EVENT:StationB 07/09/2008 08:20:00 LPCF{0.5}:(99.9%)
WARN EVENT:StationB 07/09/2008 08:22:00 LPCF{0.5}:(99.9%)

In this case, “LPCF” shows that the LPC algorithm has been used, and at 8:08 on July 9th, the
probability of an event exceeded the threshold (in this case, 94%).

Another message that is seen with some frequency is a notice that a sensor has dropped out or
been turned off due to a physical or data quality alarm signal.

WARN :StationB 07/16/2008 12:00:00 Location in calibration mode

The other messages from CANARY are hopefully self explanatory, indicating start-up and shut-
down. Error messages should have some helpful information, and are generally due either to data
format errors or missing files.

4.2 Files Created

The files that are created by CANARY are all CSV files (with the exception of the binary output
.mat file). These files are in files organized by the location, and have multiple columns for mul-
tiple algorithms. All the information is listed in the first row as header data. The different file
extensions are:

*.raw.csv This file contains the raw data collected by CANARY during operation. This is useful
for grabbing data for later analysis from a database or XML message passing system.

*.res.csv This file contains the residuals for each timestep for each signal. This can be used for
algorithm analysis.

*.prb.csv This file contains the probability of an event for each timestep and algorithm.

*.evt.csv This file contains event status information for each timestep and algorithm.

Unfortunately, this is a lot of text-based information to be output at each timestep, and it can slow
down CANARY in batch-mode operation. However, in real-time or online mode, this overhead
is very small compared to the time required waiting between new data, and can be very useful in
debugging by checking the last few lines of the files to make sure data is coming in as expected.

33

tbaranow
Highlight
This would be nice to reference in the section describing the message provided after a day's worth of time-steps.

tbaranow
Highlight
Is it possible to move this over a little bit. It looks like it is running off the page.

tbaranow
Highlight
Why should? We should probably know if the information is useful. I would remove should in this instance.

tbaranow
Cross-Out

tbaranow
Cross-Out

tbaranow
Replacement Text
CANARY down

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
that the

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
Writing this information to file

4.3 Database Output

Using a “db” output mode means that the user-ID given to CANARY must have update privileges
in the database. It is not necessary to use database output when using database intputs, or even
to have the inputs and outputs come from the same database. This is a necessary piece if data
integrity or security procedures prevent any third party software from accessing an operations
database. In this case, it is highly advisable to use a secondary database (or files, instead) for
outputs.

The database output will be to a table that will have fields named after the different locations and
algorithms, and will have all data for a given timestep in a single row. CANARY will attempt to
create the fields and/or table if they do not exist.

4.4 EDDIES and XML outputs

Both the EDDIES software and XML message passing require inputs and outputs to travel on the
same datasource definition. Please see Appendices A and B for more details.

34

tbaranow
Cross-Out

tbaranow
Replacement Text
will output

tbaranow
Cross-Out

tbaranow
Replacement Text
has

tbaranow
Cross-Out

tbaranow
Replacement Text
has

5 Configuration Details

Configuration for CANARY is done through the main configuration file. This is an XML formatted
file that has been customized for a specific site. XML is a file format where values are assigned in
name groups, called tags, with options called parameters. XML files are text files, and they can be
edited with almost any text editor (and viewed in any Internet browser). The general format is:

<tag−name parameter=’’value’’>text </tag−name>

or:

<tag−name param1=’’val1’’param2=’’val2’’/>

and finally:

<tag1><tag2 param=’’val’’ /> </tag1>

While this may seem a bit complicated at first, the sample configuration file and the descriptions
that follow will hopefully make it fairly intuitive and straightforward to adapt to a specific system.

The complete structure of a CANARY configuration file is shown below, and each of the tags will
be discussed in its own section. Parameters that will be defined in detail later and options to be
filled in will be represented as “· · ·”, while optional repeated tags will be represented as a vertical
elipsis.

35

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
water utility

Listing 5.1. Basic structure of a CANARY configuration file

<canary>

< !−− Basic conf igurat ion s e t t i n g s /−−>

<run−mode>· · ·< / run−mode>
<data−dir>· · ·< / data−dir>
<log− fi le>· · ·< / log− fi le>
<classpath>· · ·< / c lasspath>

...
<timing−options · · · / >

< !−− Input and output s e t t i n g s /−−>

<datasource · · · / >
...

<input−options · · · / >
...

<output−options · · · / >
...

<messaging · · · / >

< !−− SCADA and Monitoring Options /−−>

<general−sett ings · · · >
<signal · · · / >

...
<algorithm · · · / >

...
<l o c a t i o n · · · / >

...

< / canary>

36

tbaranow
Highlight
What is a Listing? Maybe it could be a Figure instead. It should probably be referenced in the section.

tbaranow
Highlight
It appears that the timing options are discussed in the input and output settings section. However, it looks like it is part of the basic config section here.

5.1 Basic Configuration Options

There is a subset of options that are the most basic elements of the CANARY configuraiton file.
These tags take text values as data and have no parameters. With the exception of <classpath>,
these tags occur only zero or one time within the document.

5.1.1 The run-mode tag

The <run−mode> tag defines the mode of operation for CANARY. This tag must occur exactly
once in each configuration file. An example of this tag is shown in Listing 5.2. The different values
that can be used are:

saveonly tells CANARY to read in data and immediately save it to specified output without
running any analysis. This is most useful when trying to convert one input type to another
(such as database data to files).

batch mode executes CANARY once, from the start of the data to the end of the data, then
exits. This is an off-line data analysis mode used for evaluating algorithms, monitoring
parameters, and testing.

training mode runs CANARY in batch mode, but then executes the pattern recognition training
algorithm on the results. This will produce one or more files called location.cluster,
where location is the short-id discussed in Section 5.3.4.

realtime mode runs CANARY in on-line operation mode. In this mode, CANARY will use its
internal timing to determine when to process the next data set, and it will expect to recieve
periodic data updates.

eddies uses the US EPA OW EDDIES software for its control. This mode could be for either on-
line or off-line processing. EDDIES is discussed further in Appendix A, and eddies mode
requires the appropriate input and output settings to also be set to eddies.

Listing 5.2. A sample run-mode tag

<run−mode>realtime< / run−mode>

5.1.2 The data-dir tag

The <data−dir> tag is used to override the default output location of all data, logs, etc. This can
be either a relative or complete path name based on the system architecture. This tag is optional.
An example is shown in Listing 5.3.

Listing 5.3. An example specifying a new data directory

<data−dir>C:\SCADA\DataDir< / data−dir>

37

tbaranow
Cross-Out

tbaranow
Replacement Text
Settings

tbaranow
Cross-Out

tbaranow
Cross-Out

tbaranow
Replacement Text
A

tbaranow
Inserted Text
 are defined in this section.

tbaranow
Cross-Out

tbaranow
Replacement Text
configuration

tbaranow
Highlight
Does not seem to flow well here. I think it could be reworded.

tbaranow
Inserted Text
 a

tbaranow
Note
Might want to mentioned how many times it could be used if used.

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
This section describes

RMURRAY1
Cross-Out

5.1.3 The log-file tag

The <log−file> tag is used to override the default log filename. The default filename will be the
name of the configuration file, with .xml replaced with .log. If this is not the desired log file
name, it can be overridden here. An example is shown in Listing 5.4.

Listing 5.4. An example showing how to set up a different log
file name

<log− fi le>log-2008-12-09.log< / log− fi le>

5.1.4 The classpath tag

The <classpath> tag is used to add in external functionality to CANARY. This is most important
when dealing with databases or plugin algorithms. The tag should point to a valid .jar file,
which is a compiled Java object library. The example in Listing 5.4 shows how to add the JDBC
driver for a MySQL R©database. This option can be specified as many times as needed.

Listing 5.5. An example database driver add-in. Note that the
whitespace surrounding the text values is acceptable.

<classpath>
C:\Program Files\MySQL\ConnectorJ\mysql-connector-java-5.0.4\

mysql-connector-java-5.0.4-bin.jar
< / c lasspath>

5.2 Input, Output and Message Options

Once the basic details are out of the way, the next step is to set up the input and output controls.
As was described in previous chapters, inputs and outputs can be dependent on how CANARY
is being used and what type of connection to a SCADA system is desired. In previous versions of
CANARY, input and output options had to be described separately, even when they were iden-
tical (such as is the case with EDDIES). From release 4.0 onward, both the old style and the new
<datasource> method can be used to define I/O operations.

The messenger is the mechanism by which CANARY communicates with an external controller.
In the case of EDDIES in particular, CANARY is the servant, not the master with respect to timing
and I/O. The <messaging> tag tells CANARY how to communicate with an external controller, if
one exists.

5.2.1 The datasource tag

The <datasource> tag has, possibly, the most options of any tag in the configuration file. In ad-
dition to its many parameters, most of the options can also be specified in sub-tags of the same
name; only the short-id and type options must be provided as parmaeters. The example shown
in 5.6 will show a mix of options, with both parameters and sub-tags. The list or parameters (or
sub-tags) is as follows:

38

tbaranow
Note
Again, you might want to mentioned how many can be listed. I would assume they know it is just one, but it should probably be stated plainly.

tbaranow
Cross-Out

tbaranow
Replacement Text
add-in

tbaranow
Highlight

tbaranow
Cross-Out

tbaranow
Replacement Text
Input and Output Settings

tbaranow
Cross-Out

tbaranow
Replacement Text
established,

tbaranow
Highlight
does not control the timing or the I/O.

tbaranow
Cross-Out

tbaranow
Replacement Text
parameters

tbaranow
Cross-Out

tbaranow
Replacement Text
of

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
specify

RMURRAY1
Cross-Out

short-id provides an internal alias by which other objects can refer to this datasource. It should
not have spaces or dashes, and should not start with a number. This is only an internal alias,
and should be somethings that will make sense to the user in messages or in the remaining
configuration file. This must be a parameter.

type provides an indication of what kind of input or output source this object defines. The avail-
able options are listed below:

xml specifies an XML formatted data connection.

eddies specifies an EDDIES formatted data connection.

db or jdbc specifies a generic database connection.

files specifies a set of output CSV files.

csv specifies a single CSV input file.

mat specifies a binary .mat file.

location can be represent different things. If the datasource type is a file format, then this is a
file or path name. If this is a network connection type, such as xml or db, this can be either
a full URL or the database instance. A URL can also be specified by using the optional tags
that follow.

The remaining options only apply to database, EDDIES or XML type datasources, and are irrelevant
(and possibly harmful) to add to file-based datasource definitions.

ipaddress is used to create a full URL location for network type datasources. This can be either
canonical (www.sandia.gov) or numeric (127.0.0.1). It should not include a format string,
such as “http://”.

port is the numeric port that the server CANARY will connect to uses. Is used to create a full
URL.

url-type is the prefix that determines what kind of connection is to be used. This is generally
only needed for databases, and should be of the format “jdbc:odbc:mysql” or something
similar. It should not contain the trailing “://” characters.

The combination of the previous three can be used to create a location, such as the database
URL:

jdbc:odbc:mysql:@//127.0.0.1:3601/xe

This could be specified all at once in the location option, or compiled by CANARY like:

[url-type]:@//[ipaddress]:[port]/[location]

Luckily, once the user gets this set up once, it can be easily copied and pasted for other
sources.

The remaining options are only necessary for database type connections, not XML connections.

username specifies the username to use to connect to a database source.

password specifies the password to use to connect to a database source. Because this is saved
in clear-text, it is important to make sure you remove it from the configuration file when

39

tbaranow
Cross-Out

tbaranow
Cross-Out

tbaranow
Cross-Out

tbaranow
Cross-Out

tbaranow
Replacement Text
It is

tbaranow
Cross-Out

tbaranow
Replacement Text
"http://."

sending it to other users, or to make sure that the configuration file itself is subject to access
control.

datasource-class specifies the actual Java class to use when making a database connection.
The appropriate driver should be available at the vendor’s website; search for JDBC drivers
to find the right one for the target database. The file that it will provide is the .jar file
that is specified above in the <classpath> definition. The class itself should be listed in the
driver documentation, but will contain “Datasource” or “DataSource” somewhere in the
class name. For more assistance, contact your SCADA or database administrator, as they
should know the file and classname to use to connect to their database.

input-table specifies which table to look in for new data. This is only necessary if this data-
source is a database used for input.

output-table specifies where output data should be written in a database. Is not needed for
“EDDIES” formatted databases.

timestep-field tells CANARY which field contains the “timestep” data. This field is defined
by the individual SCADA administrators, so a default value is not provided.

to-date-func specifies what database command is used to convert strings into “DateTime”
objects. This is database specific. For example, one database may use “str_to_date” while
another uses “To_Date”.

to-date-fmt is very database specific. This format should match the format used in the <timing−options>
tag described below, but will need to use the placeholders defined for the specific database.
No default is provided.

Listing 5.6. Two different datasource definitions, showing the
different options.

<datasource short−id="DATABASE" type="EDDIES"
username="CANARY" password="CANRY" >

<l o c a t i o n>xe< / l o c a t i o n>
<ipaddress>localhost< / ipaddress>
<port>1521< / port>
<url−type>jdbc:oracle:thin< / url−type>
<datasource−class>oracle.jdbc.pool.OracleDataSource< / datasource−class>
<to−date−func>To_Date< / to−date−func>
<to−date−fmt>MM/DD/YYYY HH24:MI:SS< / to−date−fmt>

< / datasource>

<datasource short−id="XMLSource" type="xml"
l o c a t i o n=" l o c a l h o s t :64000 " / >

40

tbaranow
Cross-Out

tbaranow
Cross-Out

tbaranow
Replacement Text
It is

tbaranow
Cross-Out

tbaranow
Replacement Text
"To_Date."

tbaranow
Highlight
I would move this to the next line, so it does not go outside the set margins.

tbaranow
Highlight
What is this tag? It it not defined like some of the others (eg., to-date-func). If you look at the description below, it seems this is the format of the time step. I think it should be stated here that this is the definition.

tbaranow
Highlight
A reference to the figure below should be listed here.

5.2.2 The messaging tag

There are three different messaging types that are defined by CANARY. Which one to use depends
on the inputs and outputs to be used, and the run-mode. They are specified in the type param-
eter to the <messaging> tag. Unless a third party middle-ware is used to bridge the connection
between SCADA and CANARY, the “internal” type is the right type to use.

internal This mode is primarily used when training, using “batch” mode, and when using file-
based I/O. It is also used in “realtime” mode when the datasource is of a “db” or “jdbc”
type. It is not used for “XML” or “EDDIES” type objects.

external This mode is only used by “XML” type datasources, where commands and data may be
sent on the same data path.

eddies This mode is only used by “EDDIES” type datasources.

For “external” and “eddies” type connections, a second parameter, use-id is added, with the value
being set to the short-id of the appropriate datasource. A listing with both an “external” and an
“internal” messaging tag is presented in Listing 5.7, but only one <messaging> object is allowed
per configuration file. The deprecated method of supplying all options available to <datasource>
as parameters in a messaging object is still supported though not recommended.

Listing 5.7. Two different messaging definitions, showing the
different options.

<messaging type=" e x t e r n a l " use−id="XMLSource" / >

<messaging type=" i n t e r n a l " / >

5.2.3 The input-options and output-options tags

The <input−options> tag and <output−options> tag have been replaced by the <datasource>
tag. However, legacy configuration documents with these tags should still work. The paramter
options are the same as those listed for <datasource> tag, but must be implemented as parameters,
not as subtags.

5.2.4 The timing-options tag

Finally, the <timing−options> tag defines the data frequency and messenger timing controls.
Exactly one timing-options tag must be defined for each configuration file. The following options
are the parameters that must be provided. An example is provided in Listing 5.8.

data-interval defines the spacing between two successive data points. It must be provided in
“HH:MM:SS” format. This also defines how often CANARY processes data to look for new
events.

41

tbaranow
Cross-Out

tbaranow
Replacement Text
CANARY defines three different messaging types, which are dependent on the inputs, outputs, and the run-mode.

tbaranow
Cross-Out

tbaranow
Replacement Text
of

tbaranow
Cross-Out

tbaranow
Replacement Text
parameter

poll-interval defines how often CANARY pings the database looking for new data or messages.
Data can come in asynchronously, but still be binned together by the data-interval. The
poll interval is typically on the order of a few seconds, and is also defined in “HH:MM:SS”
format.

datetime-format defines how dates and times are represented in the data sets used for input and
outputs. If a database is the I/O source, this must be in the same ordering as the “to-date-
fmt” in the datasource tag. The following symbols are defined by MATLAB:

dd is the one or two digit day of the month

mm is the one or two digit month of the year

yy is the two digit year

yyyy is the four digit year

HH is one or two digit hour

MM is minutes

SS is seconds

PM indicates that 12-hour time should be used (24-hour time is default)

start-date the first data point to be included in the calculations. The first date in a file is typically
used in batch mode.

end-date the last data point to be included. This can be the last entry in a batch mode file, or some
smaller subset. In realtime mode, reaching this date will cause CANARY to exit.

dynamic-start is either “true” or “false” (default of “false”) and when true will set the “start-date”
to twenty-four hours prior to the time when CANARY is launched.

Listing 5.8. An example 2-minute timing definition for a one-
week batch mode test.

<timing−options data− interval=" 0 0 : 0 2 : 0 0 "
poll− interval=" 0 0 : 0 0 : 0 2 "
start−date=" 0 3 / 1 2 / 2 0 0 8 0 0 : 0 0 : 0 0 AM"
end−date=" 0 3 / 1 9 / 2 0 0 8 1 1 : 5 8 : 0 0 PM"
datetime−format="mm/ dd / yyyy HH:MM: SS PM" >

< / timing−options>

5.3 SCADA and Monitoring Options

While the preceeding options will likely be similar for most applications, with one <datasource>
tag for files that is slightly modified for different input files and one for the main on-line system
that is copied and pasted as needed, the remaining options are what truly link CANARY to a
SCADA system or set of monitoring stations.

42

tbaranow
Cross-Out

tbaranow
Replacement Text
is the option to set the "start-date" to twenty-four hours prior to the time when CANARY is launched. The default value is "false" and to use this option the value should be set to "true."

tbaranow
Highlight
Does the order matter? For instance, does datetime-format always come at the end? If it is, I think it should be described last in the order above.

tbaranow
Cross-Out

tbaranow
Replacement Text
actually

tbaranow
Highlight
This part of the sentence does not flow well with the rest.

5.3.1 The general-settings tag

The <general−settings> tag is used to simplify creating new configuration files without having
to make lots of changes. If a configuration file is created that has <signal>, <algorithm> and
<location> definitions in it, this file can be referenced by setting the file parameter in this tag.
Typically, the <general−settings> tag is placed around all the following definitions, just to pro-
vide a reminder that they can be referenced from other files. Only these options can be referenced
in this way. An example is provided in Listing 5.9.

Listing 5.9. An example configuration where a different file is
used to get some signals.

<general−sett ings f i l e =" otherSigs . xml" >
<signal short−id=" newSig4 " · · · / >

...
< / general−sett ings>

5.3.2 The signal tag

The <signal> tags define all the input streams coming from the SCADA system that can be used by
CANARY. Because of this, it is very useful to keep these in a separate database-like configuration
file and include them rather than keep re-typing them or copying them. The are a large number of
options, which will be described below. There are several example definitions provided in Listing
5.10. All options are provided as parameters, not as sub-tags.

short-id a required option that is the alias for this signal within the configuration document. It is
needed to select signals for use later on, in the <location> tags. Short-ids should be unique,
must start with a letter, are case sensitive, and cannot contain spaces. Choosing a good short
ID naming scheme can make life much easier.

scada-id also required, also case sensitive. This is the identifier that uniquely describes the data
coming from the SCADA system (or file). It is defined by the SCADA system, and may be
descriptive (LOC1_MON_SITE_1_H2O_CL2_Value) or obscure (Px023E2110). It is mainly
for this reason that CANARY tracks as much as possible by the short-id instead of the scada-
id.

signal-type defines how this data stream is to be used. There are currently four type defined for
use:

WQ defines a tag as being a water quality or water quality surrogate parameter. It will be
used directly by the event detection algorithms.

OP defines a tag as belonging to an operational parameter. These signals are not used by the
EDS algorithms, but are used by the pattern matching and clustering algorithms. Other
options available to operational signals may also turn off alarms or indicate periods of
disruption.

43

tbaranow
Highlight

tbaranow
Highlight

tbaranow
Highlight

tbaranow
Highlight

tbaranow
Highlight

tbaranow
Highlight

tbaranow
Highlight
There are a lot of pronouns in this sentence, so it is difficult to understand to what "this," "it," "these," and "them" are referencing.

tbaranow
Cross-Out

tbaranow
Replacement Text
A large number of options, which are described below, are associated with this tag.

tbaranow
Cross-Out

tbaranow
Replacement Text
Several

tbaranow
Cross-Out

tbaranow
Replacement Text
are

tbaranow
Cross-Out

tbaranow
Replacement Text
is

tbaranow
Cross-Out

tbaranow
Cross-Out

tbaranow
Replacement Text
Currently,

tbaranow
Cross-Out

tbaranow
Replacement Text
types are

tbaranow
Cross-Out

tbaranow
Cross-Out

tbaranow
Replacement Text
the

tbaranow
Cross-Out

tbaranow
Replacement Text
a required, case-sensitive

tbaranow
Highlight
Is this required?

ALM indicates that this signal is a hardware alarm or error code indicator. When paired
with the appropriate WQ signa, this allows automatic removal of a bad sensor when
the hardware alarm indicates it is necessary.

CAL indicates a signal that has been defined to be a calibration indicator. When this sig-
nal is active, the entire station is placed in “calibration” mode, where no alarms can
sound, and new data will fill the history window to bring the algorithms in line with
the calibrated sensor values.

parameter_type is a string that indicates what kind of parameter this signal represents. Some
examples could be “CLM,” “Cl_2,” “pH,” “FLOW,” etc. This string will be used on any
graphs produced by CANARY, but does not indicate any special knowledge or treatment by
CANARY. To CANARY, all signals are equal, and it is blind to their parameter type.

ignore-changes has two meanings, one for WQ signals, and one for OP signals. For WQ signals,
it can be “all” or “none,” with the default being “none.” If set to “all,” then the signal is kept
in the historical record, but is not used by any algorithm.

For OP signals, there are three additional values, “increases,” “decreases,” and “both.” These
options mean that when a change in the given direction occurs in this signal, by more than
the amount specified in the precision option (described next), any alarm is cancelled. This
silence lasts for 5 timesteps. This option only makes sense for use where a monitoring station
is directly underneath a tank, and where pumping operations are known to cause direct
changes in water quality. In these cases, attaching this option to a pump status tag may aid
in decreasing false alarms due to normal operations.

precision is a complex option. Despite its name, it refers more to tolerance than actual data pre-
cision. For WQ signals, this value is used to limit alarms due to minute changes in signals
that have very small standard deviations. For example, if pH is steady long enough, the
standard deviation may go close to 0.0. However, the pH sensor hardware may only report
changes of 0.05 pH. By setting the “precision” value to 0.05, a change will never be reported
unless it is at least greater than the precision of the instrument.

While the above holds true for OP signals as well, as described in the “ignore-changes” entry,
the precision can be used as a tolerance for operational changes as well. If a pump signal
has two values, 1 and 0, then setting precision to 0.5 and ignoring increases would yield
in cancelling any alarms that occur due to changes in WQ parameters coincident with the
pump turning on.

The other use for precision is to supplement the BED algorithm in reducing false positives
due to data dropout. Some sensors have periodic “chatter” where values may drop (for
example) by 0.2 every twenty minutes, then go back up to normal. Setting the precision to
0.2 would prevent these dropouts from becoming events and sounding an alarm.

data-min is a value below which the sensor is assumed to be malfunctioning. For many water
quality surrogate sensors, this value may be 0.0. By default, this value is negative infinity.
When signal values fall below this level, the signal is dropped from the event detection
algorithms.

data-max is the opposite of the “data-min” option. Data that exceeds this value is assumed to
be untenable and the signal is turned off until data returns to within a reasonable range.

44

tbaranow
Cross-Out

tbaranow
Inserted Text
signal

tbaranow
Cross-Out

tbaranow
Cross-Out

tbaranow
Cross-Out

tbaranow
Cross-Out

tbaranow
Replacement Text
the

tbaranow
Highlight
Is this required?

These two can be useful when dealing with transmission errors, since data errors will fre-
quently drop to zero or jump far higher than is physically possible (even for a contaminant
to produce). Temperatures above and below freezing are a prime example.

units is a text string (using TEXformatting commands) that provides units information in output
files and graphs. It has no impact on the algorithms.

description can be used for internal information storage. It is not used by CANARY, and is simply
dropped by the parser.

The remaining items only apply to ALM and CAL type signals

alarm-scope is the “scada-id” of the associated data signal. It is not needed for CAL signals, but
is required for any ALM signal. Not again, the short-id will not work in this case, it must be
the actual scada tag.

normal-value is the value this signal takes when everything is okay. This defaults to 1.

bad-value is the value the signal takes when the alarm is active, indicating a calibration event or
sensor malfunction.

Listing 5.10. Several example signal tags.

<signal
short−id="TEST1_TURB"
scada−id="TEST1_TURB"
parameter_type="TURB"
signal−type="WQ"
units="NTU"
ignore_changes="none"
descr ipt ion=" Test Data Turbidity "
precis ion=" 0 . 0 1 " >

< / s ignal >

<signal
short−id="TEST1_CAL"
scada−id="TEST1_CAL"
parameter_type="CAL"
signal−type="CAL"
ignore_changes="none"
normal−value=" 1 "
bad−value=" 0 "
descr ipt ion=" Test Data Calibrat ion Alarm" >

< / s ignal >

<signal short−id=" Chlorine " scada−id=" P_0x00830000_001 "
signal−type="WQ" units="mg/ L"
precis ion=" 0 . 0 1 " data−min=" 0 .035 " data−max=" 5 . 0 "
descr ipt ion=" Chlorine Analyzer " / >

45

tbaranow
Cross-Out

tbaranow
Inserted Text
s

tbaranow
Highlight
I don't understand this statement.

tbaranow
Cross-Out

tbaranow
Replacement Text
The default is 1.

tbaranow
Cross-Out

tbaranow
Replacement Text
the

tbaranow
Cross-Out

tbaranow
Replacement Text
normal.

tbaranow
Highlight
What is everything? The sensor status? Something else?

tbaranow
Highlight
Does the order matter?

<signal short−id=" ChlorineAlarm " scada−id=" P_0x02590000_008 "
signal−type="ALM" alarm−scope=" P_0x00830000_001 "
normal−value=" 0 " bad−value=" 1 " / >

5.3.3 The algorithm tag

The <algorithm> tag defines the parameters for an event detection algorithm which will be used
by CANARY. It consists of parameters and two optional sub-tags. The parameters are listed below,
and three different algorithms, showing different configurations, are presented in Listing 5.11.

short-id as with signals and datasources, this parameter defines the alias by which this algorithm
will be refered elsewhere in the configuration file.

mFile indicates the type of algorithm to be used. As described in Chapter 2, there are several
builtin algorithms (LPCF, MVNN) as well as external plugins (Java) that can be used. The
options for mFile are: LPCF, MVNN, Java, CSS-P, and CSS-E.

window defines the history window size, nh.

threshold defines the primary threshold, τa. This parameter can take a space-separated list of
thresholds which will be evaluated as a single algorithm, but will be output as if they were
separate algorithms. This improves processing times for large files with multiple thresholds.

use-bed is “true” or “false” depending on whether the BED should be used. The default (and
recommended value) is “true.”

bed-win-min is the primary window size for the BED, nb.

bed-win-max is the number of timesteps before the BED declares a baseline change, nB.

binom-p-calue is the probability of an outlier at any given timestep, p.

binom-threshold is the secondary threshold, which the BED probability of an event must exceed
before an event alarm is sounded, τb.

java-class is the class name for the Java object to be created as an external algorithm.

5.3.3.1 The use-algorithm tag

The CSS-P and CSS-E algorithms take the output of other algorithms as their input, rather than
the raw data from the SCADA system. For this to work, the feeder algorithms must be specified
using the <use−algorithm> child tag. The single parameter is the “id” field, which contains the
short id of the feeder algorithm.

5.3.3.2 The clustering tag

When using pattern matching via clustering, the <clustering> tag must be added to the algorithm
to indicate that pattern matching will be used. The parameters to this tag are:

46

tbaranow
Cross-Out

tbaranow
Replacement Text
the

tbaranow
Cross-Out

tbaranow
Replacement Text
built-in

tbaranow
Cross-Out

tbaranow
Replacement Text
plug-ins

tbaranow
Highlight
Is this the same as sub-tag?

tbaranow
Highlight
Where are the sub-tags described? I would use a sentence similar to the one used with the location tag (section 5.3.4).

file is the filename of a cluster produced in training mode. If this parameter is specified, no other
clustering parameters are applied (it is okay to keep them).

Listing 5.11. Three different algorithms, showing the options
available to the user for algorithm configuration.

5.3.4 The location tag

The final tag is the <location> tag. This tag defines a monitoring station: inputs, outputs, asso-
ciated signals (regardless of physical location), and the algorithms to use. It is called a location
because even though the signals may not be in same place, they all come together to represent
the water quality event status at a particular point in the overall distribution system. Station and
location are often used interchangeably.

There are several parameters that can be part of a location tag. They are listed below. Following
these parameters, the sub-tags that identify the different pieces are described.

short-id defines the name of the location (monitoring station) for use internally and in message
logs.

scada-id defines the SCADA prefix associated with this station.

Station is a numeric identification for this location or station.

output_PointNr defines a point number to be associated with an output tag from this station.

output_TagName defines the SCADA tag associated with CANARY output for this station.

5.3.4.1 The use-input and use-output tags

These tags both take one parameter, “id” which identifies which datasource to use for input or
output. Any number of these tags can be used for a given location.

5.3.4.2 The use-signal tag

This tag has one required parameter, “id,” and one optional parameter. The optional parameter
is “no-cluster” and can be “true” or “false.” The default is “false” which means clustering will be
performed (if active) on the signal. Every OP, CAL and WQ signal that is associated with a given
location must have its own <use−signal> tag within the location block.

5.3.4.3 The use-algorithm tag

The final tag(s) identify which algorithm should be used to find events at a given location. The
“id” parameter is used to pick the algorithms from those defined previously.

Listing 5.12. A location definition which shows all available op-
tions

47

tbaranow
Inserted Text
 the

tbaranow
Highlight
Nothing is shown here.

tbaranow
Highlight
Nothing is shown here. In addition, it needs to be referenced at the beginning of the location tag section (5.3.4).

tbaranow
Cross-Out

tbaranow
Replacement Text
"id,"

tbaranow
Cross-Out

tbaranow
Replacement Text
"false,"

tbaranow
Cross-Out

tbaranow
Replacement Text
sub-tag(s)

5.4 Sample Configuration Files

This section presents two complete configuration files as samples for reference. Listing ?? provides
a simple on-line configuration file, while Listing ?? provides a more complex off-line configuration
file.

TODO: Insert files

48

tbaranow
Highlight

6 Training CANARY and Choosing Parameter Settings

This chapter gives a process overview on how to select the best parameters to use for a specific
station and how to create a baseline pattern library.

6.1 Training Steps

Steps in this training process are:

1. Gather historical data in a file. Typically 3-6 months of data are adequate for identifying
recurring patterns in the water quality data.

2. Determine the size of the window for these data. This can be estimated as enough time steps
to provide a day or two of previous data in the window, or the autocorrelation function
(ACF) of the historical data can be calculated and used to identify the number of time steps
beyond which the correlation coefficient drops to a negligible number. In general, larger
window sizes lead to more accurate estimation of water quality (lower residuals), but also
increase the run time.

3. Run CANARY with the <run−mode> set to “batch” mode and the value of the threshold,
τa, set to infinity “inf” (infinity). Setting τa to infinity makes CANARY ignore the remaining
BED parameters.

4. The next step is to determine an appropriate value for τa. At the end of the run, the residual
output file is examined to determine the mean and standard deviation of the residuals. This
file is typically output in csv format and can easily be opened in a spreadsheet and the
calculation of the mean and standard deviation completed there. A rule of thumb for setting
the τa is to add two times the standard deviation to the mean of the absolute value of the
residuals. Typically, this value will be less than 1.0.

5. Save the original config file under a new name and make the following changes to the origi-
nal config file:

(a) change the value of τa from inf to the value determined in the previous step;

(b) set the value of binom-win-min to 10, the value of binom-p-value to 0.5 and binom-
threshold (τb) to 0.90; and

(c) set the <run−mode> to “TRAINING” and re-run CANARY.

6. After the CANARY run finishes, a screen will pop up on the computer displaying each event
that was identified and the water quality values prior to the event declaration. The user is
prompted to add this series of water quality data to the pattern library determination or not.
Selecting the “Auto” button will add all water quality series for each identified event to the
pattern library determination.

7. When decisions have been made on each time series prior to and including an event, each
signal within these patterns is then fit with a low-order polynomial. The coefficients of these

49

tbaranow
Highlight
This does not make sense. I think a word is missing, such as "is" between "deviation" and "completed."

RMURRAY1
Inserted Text
.

RMURRAY1
Cross-Out

RMURRAY1
Inserted Text
Alternately,

polynomials are stored in an output file called “location.cluster” where location is the name
of the station short-id in the config file. This information is stored within a matrix in this
file that has one row for each event that was identified by CANARY. The total number of
columns is the order of the polynomial plus one times the number of water quality signals
examined. For example, use of a third-order polynomial for analysis of three water quality
signals will result in 12 columns in the matrix.

50

RMURRAY1
Note
It seems that additional steps are missing here. What about running all the algorithms with multiple parameter values and examining the output in order to select the one that minimizes false positives?

References

Hall, J., Zaffiro, A. D., Marx, R. B., Kefauver, P. C., Krishnan, E. R., Haught, R. C., and Herrmann,
J. G. (2007). On-line water quality parameters as indicators of distribution system contamina-
tion. Journal of the American Water Works Association, 99:1:66–77.

Hart, D. B., McKenna, S. A., Klise, K. A., Cruz, V. A., and Wilson, M. P. (2007). Canary: A water
quality event detection algorithm development and testing tool. In Proceedings of ASCE World
Environmental and Water Resources Congress 2007, Tampa FL. ASCE.

Klise, K. A. and McKenna, S. A. (2006a). Multivariate applications for detecting anomalous wa-
ter quality. In Proceedings of the 8th Annual Water Distribution Systems Analysis Symposium,
Cincinnati OH. ASCE.

Klise, K. A. and McKenna, S. A. (2006b). Water quality change detection: Multivariate algorithms.
In Proceedings of SPIE Defense and Security Symposium 2006, Orlando FL. International Society
for Optical Engineering (SPIE).

MathWorks (2002). Signal Processing Toolbox User’s Guide, Version 6. The MathWorks.

McKenna, S. A., Hart, D. B., Klise, K. A., Cruz, V. A., and Wilson, M. P. (2007). Event detection
from water quality time series. In Proceedings of ASCE World Environmental and Water Resources
Congress 2007, Tampa FL. ASCE.

McKenna, S. A., Klise, K. A., and Wilson, M. P. (2006). Testing water quality change detection
algorithms. In Proceedings of the 8th Annual Water Distribution Systems Analysis Symposium,
Cincinnati OH. ASCE.

US EPA (2005). Watersentinel online water quality monitoring as an indicator of drinking water
contamination. EPA 817-D-05-002, U.S. Environmental Protection Agency.

51

A EDDIES Integration

A.1 EDDIES Databases

The EDDIES input mode is taken from the EDDIES database specifications, and the authors would
refer you to the documentation that came with EDDIES if it is being used to interface with real-
time SCADA operations. An example of an EDDIES database table is shown in Table A.1. When
setting up CANARY inside EDDIES, use the provided “canarye.exe” executable instead of the
standard “canary.exe” executable. This will force CANARY to use a default configuration file
called “eddies.xml” that must be in the CANARY installation directory, but prevents the user from
having to specify a filename when CANARY is launched by EDDIES. If this interactive nature is
desired, use the standard “canary.exe” executable.

Table A.1. Sample EDDIES input data

LocationID ParameterID ParameterType TimeStep Value Quality
AnyLoc CL2X_ALM Chlorine Alarm 2006-10-14 00:02:00 0
AnyLoc CL2X_V Chlorine 2006-10-14 00:02:00 0.901478
AnyLoc COND_V Conductivity 2006-10-14 00:02:00 389.6429
AnyLoc PHXX_V pH 2006-10-14 00:02:00 8.697689
AnyLoc TEMP_V Temperature 2006-10-14 00:02:00 19.4194
AnyLoc TOCX_ALM TOC Alarm 2006-10-14 00:02:00 0
AnyLoc TOCX_MREQ TOC Request 2006-10-14 00:02:00 0
.

A.2 EDDIES Database Configuration Entries

The following if an example showing the basic input and output settings that might be used to
connect to the EDDIES system (minus the <general−settings> section).

<canary>
<data−dir>C:\EDDIESData\Canary< / data−dir>
<classpath>C:\Program Files\canary\ojdbc14.jar< / c lasspath>

<datasource
short−id=" eddies "
type=" eddies "
datasource−class=" or ac le . jdbc . pool . OracleDataSource "
to−date−func=" To_Date "
to−date−fmt="MM/DD/YYYY HH:MI AM"
username="CANARY"
password="CANARY" >

<ipaddress>localhost< / ipaddress>
<port>1521< / port>

52

tbaranow
Highlight
I don't think there should be an empty header. Maybe you could state what EDDIES is in the briefest sense.

tbaranow
Cross-Out

tbaranow
Replacement Text
is

<l o c a t i o n>xe< / l o c a t i o n>
<url−type>jdbc:oracle:thin< / url−type>
<timestep−field>TIME_STEP< / timestep−field>

< / datasource>

<messaging
type=" eddies "
l o c a t i o n=" jdbc : or ac le : thin :@ / / l o c a l h o s t : 1 5 2 1 / xe "
datasource−class=" or ac le . jdbc . pool . OracleDataSource "
to−date−func=" To_Date "
to−date−fmt="MM/DD/YYYY HH:MI AM"
username="CANARY"
password="CANARY"

/ >

< / canary>

The station details in the <location> tag should have: <use−input id="eddies"/> and <use−output id="eddies"/>
for its I/O configuration settings.

A.3 Algorithm Configuration through EDDIES

You MUST define an algorithm called "EDDIES_LOCNAM" where LOCNAME is the CASE-SENSITIVE
scada-id you used for in the <location> definition. You can edit the parameters via the EDDIES
interface, but the algorithm must be defined in the XML configuraiton file first.

The available options via EDDIES configuration are:

DataDirectory C:\EDDIESData\Canary
TimeStepInterval 2
EDS-Name CANARY
Algorithm LPCF
BED-ProbOutlier 0.5
BED-ProbThresh 0.99
BED-WindowMax 24
BED-WindowMin 3
DateTimeFormat yyyy-mm-dd HH:MM:SS
ExecMode EDDIES
Threshold 2.5
UseBED TRUE
WindowSize 48
Clusterfile LOCNAME.cluster

53

tbaranow
Highlight
This runs off the page. I would move it to the next line.

tbaranow
Cross-Out

B XML Messaging Systesm

Note: The XML schema itself was not developed by the CANARY authors, and is not reproduced here,
pending permission from the schema owner. This section will be updated to either reference the appropriate
website where the schema can be found, or with the schema itself at a future time.

The main option to note, here, is that using XML messaging requires the same datasource to be
used as both input and output. This connection must be defined using a <datasource> tag, and
not paired <input−options> and <output−options> tags. When using XML messaging, make
sure to set the “messaging” type to “internal” to allow CANARY to control timing objects.

54

tbaranow
Cross-Out

tbaranow
Replacement Text
System

C Java Algorithm Plugin API

Listing C.1. A dummy algorithm written in Java that shows
the required interface for use with CANARY. Don’t use this algo-
rithm as is, though, since it returns the raw data to be compared
to thresholds!

/*
* DummyAlgorithm.java

*
* Created on October 15, 2008, 1:29 PM

*
* To change this template, choose Tools | Options and locate the template under

* the Source Creation and Management node. Right-click the template and choose

* Open. You can then make changes to the template in the Source Editor.

*/

import java.util.Vector;

/**
*
* @author dbhart

*/
public c l a s s DummyAlgorithm {

/** None of the variables are defined in the API */
protected double threshold;
protected i n t windowsize;
protected Vector lastData;
protected Vector thisData;
protected Vector residuals;
protected Vector probabilities;

/** Creates a new instance of DummyAlgorithm */
public DummyAlgorithm() {
}

/** The following functions are all defined by the API */
public void setWindow(i n t winsize) {

windowsize = winsize;
}

public void setThreshold(double thold) {
threshold = thold;

}

55

tbaranow
Cross-Out

tbaranow
Replacement Text
Do not

tbaranow
Cross-Out

tbaranow
Highlight
Again, I think you need some text here before you begin with a figure/listing.

tbaranow
Highlight
Almost runs off the page. Suggest moving to next line.

tbaranow
Highlight
Almost runs off the page. Suggest moving to next line.

tbaranow
Highlight
Do you want this in here with your specific username?

public void newData(Vector v) {
lastData = thisData;
thisData = v;

}

public i n t processData () {
residuals = thisData;
probabilities = lastData;
return 0;

}

public Vector getResiduals () {
return residuals;

}

public Vector getProbabilities () {
return probabilities;

}

/** The following functions are not defined by the API */

}

56

D License Agreements

The CANARY software is distributed under the terms of the GNU Lesser General Public License
(LGPL) (see disclaimer at the beginning of this work). For your reference, the GNU LGPL and
the GNU General Public License (GPL), of which the LGPL is a derivative, are included in this
appendix. The GNU LGPL is contained in lgpl-3.0.txt. The GNU GPL is contained in the
file gpl-3.0.txt, included in the CANARY distribution package, or on-line as indicated in the
LGPL.

The MATLAB Component Runtime libraries are subject to the MATLAB Software License, and
CANARY, as deployed software, is subject to the MATLAB Software License Deployment Adden-
dum. Please see mcr-7.5.txt for the full text of this license including all addendums.

D.1 GNU Lesser General Public License

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.

"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".

The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the

57

object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license
document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.

c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the

58

copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user’s computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.

e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version

59

published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy’s public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

D.2 MATLAB Software License

The MathWorks, Inc.
Software License

IMPORTANT NOTICE

THE LICENSE AGREEMENT TOGETHER WITH ANY APPLICABLE ADDENDUM REPRESENTS
THE ENTIRE AGREEMENT BETWEEN YOU (THE "LICENSEE") AND THE MATHWORKS,
INC. ("MATHWORKS") CONCERNING THE PROGRAM(S) AND DOCUMENTATION
DELIVERED HEREUNDER.

The MathWorks, Inc. Software License Agreement

Installation and Use Addendum (see mcr-7.5.txt)

Academic Installation and Use Addendum (see mcr-7.5.txt)

Student Version Installation and Use Addendum (see mcr-7.5.txt)

Deployment Addendum

The MathWorks, Inc. Software License Agreement

1. DEFINITIONS.

1.1. "Licensee" means you, whether an individual or an entity, to whom
MathWorks grants the License, and who is responsible for
complying with the contractual obligations of the License, and
ensuring that anyone permitted access to the Programs also
complies with such obligations.

1.2. "Affiliate" means a legal entity which is controlled by, or
controls, or is under common control with Licensee. Control
means (i) beneficial ownership of at least fifty percent (50%) of
the voting securities of a corporation or other business
organization with voting securities, or (ii) a fifty percent
(50%) or greater interest in the profits and capital of a
partnership or other business organization without voting
securities.

60

1.3. "Documentation" means the user guides, if any, accompanying
delivery of a Program, as may be updated from time to time.
Documentation may be delivered in printed and/or online forms,
and in one or more languages.

1.4. "Internal Operations" means the use of a Program by employees,
consultants, student interns, and software administration
contractors of Licensee or an Affiliate on behalf of the Licensee
or Affiliate.

1.5. "Licensed User" means a user of the Programs, designated by the
Licensee as authorized to use the Programs for Licensee’s
Internal Operations, to the extent permitted by the License
Option acquired.

1.6. "License Option" means the specific rights, restrictions, and
obligations under which Licensee may install and use a Program
pursuant to this Agreement, including those related to the
permitted Installation Type(s) associated with the License Option
acquired, as described in the applicable Installation and Use
Addendum, and including restrictions associated with the License
being an "Annual License," "Term License," or "Perpetual License"
as described under Section 8.

1.7. "Licensor" means the person who, or entity which, grants a
license to MathWorks to redistribute that person’s or entity’s
intellectual property.

1.8. "Processor" means a single integrated circuit on the motherboard
of a computer that contains one or more cores which are used for
interpreting software instructions and processing data contained
in computer programs.

1.9. "Program" means the computer software delivered and licensed
hereunder, including Documentation, enhancements and error
corrections. Each product from MathWorks is a separate Program.
"Ineligible Program" is any Program that Licensee may not deploy,
compile, distribute, or call from a web application, as the case
may be. A current list of each Ineligible Program is available
at www.mathworks.com/ineligible_programs.

1.10. "Third Party" means any person or legal entity that is not
MathWorks, the Licensee, or an Affiliate.

2. ACCEPTANCE AND REFUNDS. If Licensee does not accept the terms and
conditions of this License and any applicable Addendum, or if
Licensee terminates this License, for any reason, within thirty (30)
days of Program delivery (the "Acceptance Period"), then Licensee
shall immediately return the Programs licensed hereunder to MathWorks
or the authorized distributor from whom Licensee acquired the
Programs and, if returned within the Acceptance Period, shall receive
a full refund. By retaining a Program throughout the Acceptance
Period, Licensee accepts the applicable rights, and agrees to be
bound by the applicable obligations and restrictions, of this
Agreement including the License Option acquired with respect to that
Program.

3. LICENSE GRANT. MathWorks hereby grants to Licensee, subject to the
terms of this Agreement, a nonexclusive license (the "License") to:

61

3.1. install and use the Programs solely on computer systems
controlled by Licensee, in accordance with the License Option
acquired and associated permitted Installation Type provisions
contained in the relevant Installation and Use Addendum, and
solely for Internal Operations;

3.2. provide access to online Documentation on Licensee’s intranet,
provided it is not accessible over the open Internet;

3.3. print portions of the online Documentation for reasonable use by
Licensed Users; and

3.4. use the Programs as expressly set forth in the Deployment
Addendum.

4. LICENSE RESTRICTIONS. The License is subject to the express
restrictions set forth below. Licensee shall not, and shall not
permit any Third Party to:

4.1. modify, or create any derivative work of, any part of the
licensed Programs, except as expressly permitted in Article 7
and the Deployment Addendum. Notwithstanding anything to the

contrary contained herein, any such permitted modifications must
be consistent with all other terms of this Agreement;

4.2. adapt, translate, copy, or convert all or any part of a Program
in order to create software, a principal purpose of which is to
perform the same or similar functions as Programs licensed by
MathWorks or to replace any component of the Programs;

4.3. rent, lease, or loan the Programs; use the Programs for
supporting Third Parties’ use of the Programs, time share the
Programs, or provide service bureau use;

4.4. disassemble, decompile, reverse engineer the Programs or
otherwise attempt to gain access to its method of operation or
source code (other than files provided for convenience in source
code form by MathWorks);

4.5. sell, license, sublicense, publish, display, distribute,
disseminate, assign, or otherwise transfer (whether by sale,
exchange, lease, gift, or otherwise) to a Third Party the
Programs, any copy or portion thereof, or any License or other
rights thereto, in whole or in part, without MathWorks’ prior
written consent, except as expressly permitted in the Deployment
Addendum;

4.6. alter, remove, or obscure any copyright, trade secret, patent,
trademark, logo, proprietary and/or other legal notices on or in
copies of the Programs;

4.7. use MathWorks’ name, trade names, logos, or other trademarks of
MathWorks or any of its Affiliates or Licensors in any
advertising, promotional literature or any other material,
whether in written, electronic, or other form, distributed to
any Third Party, except in the form provided by MathWorks, and
then solely for purposes of identifying MathWorks’ Programs;

62

4.8. provide access (directly or indirectly) to the Programs via a web
or network Application, except as permitted in Article 8 of the

Deployment Addendum;

4.9. copy, make available for copy, or otherwise reproduce the
Programs, in whole or in part, except either (a) as may be
required for their installation into computer memory for the
purpose of executing the Program in accordance with the License
Option and associated permitted Installation Type(s), (b) as
expressly permitted in the Deployment Addendum, or (c) to make a
reasonable number of copies solely for back-up purposes provided
that any such permitted copies shall reproduce all copyright,
trade secret, patent, logo, proprietary and/or other legal
notices contained in the original copy obtained from MathWorks;

4.10. access or use Programs that Licensee is not currently licensed
to access or to use;

4.11. disclose the personal license password and/or license file to a
Third Party or allow them to be used except for installation
and use of the Programs as provided herein;

4.12. republish the Documentation, except as expressly permitted in
Section 3; and/or

4.13 create a server, for code generation, compilation, or other
Programs.

5. ADDITIONAL FEES. The fees for the License granted herein are
determined based upon Licenseećs installation and use of the Programs
in the country in which the original delivery of the Programs occurs.
MathWorks may charge Licensee an additional fee for any subsequent
installation and use of the Programs licensed hereunder in any other
country.

6. RETENTION OF RIGHT, TITLE AND INTEREST BY MATHWORKS AND ITS LICENSORS.
The Programs shall at all times remain the property of MathWorks
and/or MathWorks’ Licensors and Licensee shall have no right, title,
or interest therein, except as expressly set forth in this Agreement.
Licensee shall take appropriate action by instruction, agreement, or
otherwise with any persons permitted access to the Programs, so as to
enable Licensee to satisfy its obligations under the terms of this
Agreement.

7. LICENSES FOR THIRD PARTY SOFTWARE. MathWorks has been granted
licenses to distribute certain Third Party software. As a condition
of those licenses, MathWorks is required to distribute the software
to Licensee subject to specific terms and conditions, which may be
different from or additional to those contained herein for MathWorks’
Programs. Should such Third Party software be provided under the
Lesser General Public License, Licensee may make modifications of the
work identified in Section 6 of the Lesser General Public License for
Licensee’s own use and reverse engineering for debugging such
modifications. Licensee understands and agrees that acceptance of
this Agreement also confirms Licensee’s acceptance of the applicable
provisions for use, including the restrictions on use, of such Third
Party software. The current applicable provisions may be viewed at
www.mathworks.com/thirdpartylicense. Licensee may also contact
MathWorks to obtain the current applicable provisions. Licensee’s

63

breach of the applicable provisions of any Third Party’s license
terms shall also be considered a material breach of this Agreement.

8. SOFTWARE MAINTENANCE SERVICE. During any paid Software Maintenance
Service term, if applicable, MathWorks shall provide Software
Maintenance Service for the licensed Programs which consists of:
delivering subsequent releases of the Programs, if any, that are not
charged for separately; exerting reasonable efforts to both (a)
provide, within a reasonable time, workarounds for any material
programming errors in the current release of the Programs that are
directly attributable to MathWorks, and (b) correct such errors in
the next available release, provided Licensee provides MathWorks with
sufficient information to identify the errors. During this same paid
Software Maintenance Service term, Licensee shall also be entitled to
receive technical support for the current release. Technical support
means assistance by telephone, fax, and electronic mail with the
installation and/or use of the then-current release of the licensed
Programs, including all available bug fixes and patches, and their
interaction with supported hardware and operating systems
("Platforms"). MathWorks reserves the option to discontinue, in
whole or in part, and at any time, offering Software Maintenance
Service and/or technical support for any Program or Platform.

9. LICENSE DURATION ("TERM"). This Agreement shall continue until the
earlier of (a) termination by MathWorks or Licensee as provided
below, or (b) such time as there are no Programs being licensed to
Licensee hereunder.

9.1. For Annual Licenses: Licensee understands and agrees that each
Annual License will expire automatically immediately after its
corresponding one (1) year period, unless Licensee renews its
License by remitting the then-current annual License fee.
Licensee understands that the Programs will stop operating
unless Licensee pays the License fee and is provided new annual
passcodes. Licensee understands and agrees that the Software
Maintenance Service for each Annual License will terminate
automatically upon expiration of the Annual License Term.

9.2. For Term Licenses: Licensee understands and agrees that each
Term License will expire automatically immediately after the
corresponding period of the term licensed, unless Licensee
renews its License by remitting the then-current term License
Fee. Licensee understands that the Programs will stop operating
unless Licensee pays the license fee and is provided new term
passcodes. Licensee understands and agrees that the Software
Maintenance Service for each Term License will terminate
automatically upon expiration of the License Term.

9.3. For Perpetual Licenses: Licensee shall have the right to use
the Programs indefinitely, subject to the termination provisions
in this Agreement. Licensee understands and agrees that the
Software Maintenance Service for each Perpetual License will
terminate automatically upon expiration of the initial Software
Maintenance Service term included with the acquisition of the
License. Thereafter, the Software Maintenance Service term may
be renewed for any Program, at the then-current price, and for
the then-applicable term, as long as MathWorks offers such
Software Maintenance Service for such Program.

64

9.4. For Student Licenses: The Student License term expires
automatically immediately after the duration of Licensee’s
enrollment in a degree-granting institution or participation in
a continuing education program of a degree-granting institution.
Software Maintenance Service is not available for Student
Licenses.

10. TERMINATION. MathWorks may terminate this Agreement and all Licenses
granted hereunder by written notice to Licensee if Licensee breaches
any material term of this License, including failure to pay any
License fees due, and Licensee has not cured such breach within sixty
(60) days of written notification. MathWorks may immediately
terminate upon notice this Agreement and all Licenses granted
hereunder should Licensee breach the terms and conditions of Sections
3, 4, and/or 10. Licensee may terminate this License at any time,
for any reason. Licensee shall not be entitled to any refund if this
License is terminated, except for License fees paid for any Programs
for which the Acceptance Period has not expired at the time of
termination. Upon termination, Licensee shall promptly return all
but archival copies of the Programs in Licensee’s possession or
control, or promptly provide written certification of their
destruction.

11. EXPORT CONTROL. The Programs may be subject to U.S. export control
laws or other (U.S. and non-U.S.) governmental export and import
laws and regulations. Notwithstanding any other term of this
Agreement or Third Party agreement, Licensee’s rights under this
Agreement may not be exercised by Licensee or any Third Party in
violation of such laws and regulations, nor may this Agreement be
transferred to any party where doing so would result in such a
violation. The terms of any limitation on the use, transfer or
re-export of the Programs imposed by MathWorks in any Destination
Control Statement or other document for the purpose of export
control shall prevail over any term in this Agreement. It shall be
Licensee’s responsibility to comply with the latest United States or
other governmental export and import regulations.

12. FEDERAL ACQUISITION. This provision applies to all acquisitions of
the Programs and Documentation by, for, or through the federal
government of the United States. By accepting delivery of the
Programs or Documentation, the government hereby agrees that this
software or documentation qualifies as commercial computer software
or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only
those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance,
display, and disclosure of the Programs and Documentation by the
federal government (or other entity acquiring for or through the
federal government) and shall supersede any conflicting contractual
terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement
law, the government agrees to return the Programs and Documentation,
unused, to MathWorks.

13. FOR EUROPEAN UNION LICENSEES ONLY. Any contractual provisions of
this Agreement contrary to laws implemented under Article 6 of
Appendix V of the European Union Software Directive or to the
exceptions provided for in Article 5(2) and (3) of such Appendix

65

shall be null and void solely to the extent decompiling,
disassembling, or otherwise reverse-engineering of the Programs is
necessary to enable the Licensee to create an independent program
that is interoperable with the Programs or any other permitted
objectives specified by such laws implemented under such directive
(collectively, the "Permitted Objectives"), provided that any such
information gained is used solely for such Permitted Objectives.

14. TAXES, DUTIES, CUSTOMS. Absent appropriate exemption certificates
or other conclusive proof of tax exempt status, Licensee shall pay
all applicable sales, use, excise, value-added, and other taxes,
duties, levies, assessments, and governmental charges payable in
connection with this Agreement or the Licenses granted hereunder,
excluding taxes based on or measured by MathWorks’ income, for which
MathWorks shall be solely responsible.

15. ASSIGNMENT. Licensee may not assign or otherwise transfer this
Agreement and its rights and obligations hereunder, in whole or in
part, by operation of law or otherwise, without the written consent
of MathWorks. In the case of any permitted assignment or transfer
of or under this Agreement, this Agreement or the relevant
provisions shall be binding upon, and inure to the benefit of, the
successors, executors, heirs, representatives, administrators and
assigns of the parties hereto. MathWorks may charge Licensee an
administrative fee for any permitted assignment.

16. LIMITATION OF LIABILITY. The Programs should not be relied on as
the sole basis to solve a problem or implement a design whose
incorrect solution or implementation could result in injury to
person or property. If a Program is employed in such a manner, it
is at the Licensee’s own risk and MathWorks and its licensors
explicitly disclaim all liability for such misuse to the extent
allowed by law. MathWorks’ and MathWorks’ Licensors’ liability for
death or personal injury resulting from negligence or for any other
matter in relation to which liability by law cannot be excluded or
limited shall not be excluded or limited. Except as aforesaid, (a)
any other liability of MathWorks and its Licensors (whether in
relation to breach of contract, negligence or otherwise) shall not
in total exceed the amount paid to MathWorks under this Agreement in
the twelve month period preceding the claim in question, for the
Program with respect to which the liability in question arises; and
(b) MathWorks and its Licensors shall have no liability for any
indirect or consequential loss (whether foreseeable or otherwise and
including loss of profits, loss of business, loss of opportunity,
and loss of use of any computer hardware or software). Some states
do not allow the exclusion or limitation of incidental or
consequential damages, so the above exclusion or limitation may not
apply to Licensee.

17. LIMITED WARRANTY/LIMITATION OF REMEDIES. MathWorks warrants that
MathWorks, on its own behalf or through its Licensors, has the right
to grant the License rights hereunder. MathWorks warrants that the
physical media provided shall be free from defects in material and
workmanship for a period of ninety (90) days from delivery, or it
will be replaced by MathWorks at no cost to Licensee. MathWorks
further warrants, for a period of one (1) year from delivery or for
the term of the License, whichever is less, that each copy of each
Program will conform in all material respects to the description of
such Program’s operation in the Documentation. In the event that a

66

Program does not operate as warranted, Licensee’s exclusive remedy
and MathWorks’ sole liability under this warranty shall be the
correction or workaround by MathWorks of major defects within a
reasonable time. Should such correction or workaround be
impractical, MathWorks may, at its option, terminate the relevant
License and refund the initial License fee paid to MathWorks for
such Program. All requests for warranty assistance should be
directed to The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA
01760-2098, U.S.A.

18. DISCLAIMER OF WARRANTIES. Except for warranties expressly set forth
in Section 16 of this Agreement (or as implied by law where the law
provides that the particular terms implied cannot be excluded by
contract), any and all Programs, Documentation, and Software
Maintenance Services are delivered "as is" and MathWorks makes and
the Licensee receives no additional express or implied warranties.
MathWorks and its Licensors hereby expressly disclaim any and all
other conditions, warranties, or other terms of any kind or nature
concerning the Programs, Documentation, and Software Maintenance
Services (including, without limitation, any with regard to
infringement, merchantability, quality, accuracy, or fitness for a
particular purpose or Licensee’s purpose). MathWorks also expressly
disclaims any warranties that may be implied from usage of trade,
course of dealing, or course of performance. Except for the express
warranties stated in Section 16 of this Agreement, the Programs,
Documentation, and Software Maintenance Services are provided with
all faults, and the entire risk of satisfactory quality,
performance, accuracy, and effort is with Licensee. MathWorks does
not warrant that the Programs and Documentation will operate without
interruption or be error free. Some states and countries do not
allow limitations on how long an implied warranty lasts, so the
above limitation may not apply to Licensee. The warranty in Section
16 gives Licensee specific legal rights and Licensee may also have
other rights which vary from state to state and country to country.
Licensee accepts responsibility for its use of the Programs and the
results obtained therefrom.

19. GOVERNING LAW; JURISDICTION. This Agreement shall be interpreted,
enforced and construed and the rights of the parties hereunder
governed in all respects by the laws of the Commonwealth of
Massachusetts, United States of America, without regard to its
conflicts of law provisions, and both parties consent to the
jurisdiction of the federal and state courts located in said
Commonwealth and consent to the service of process, pleadings and
notices in connection with any and all actions initiated in such
courts. The parties agree that a final judgment in any such action
or proceeding shall be conclusive and binding and may be enforced in
any other jurisdiction. To the extent any governing law, treaty, or
regulation is in conflict with this Agreement, the conflicting terms
of this Agreement shall be superseded only to the extent necessary
by such law, treaty, or regulation. If any provision of this
Agreement shall be otherwise unlawful, void, or otherwise
unenforceable, that provision shall be enforced to the maximum
extent permissible. In either case, the remainder of this Agreement
shall not be affected. The parties agree that the U.N. Convention
on Contracts for the International Sale of Goods shall not apply to
this Agreement. The parties further agree that the Uniform Computer
Information Transactions Act, or any version thereof, adopted by any
state, in any form ("UCITA"), shall not apply to this Agreement. To

67

the extent that UCITA is applicable, the parties agree to opt out of
the applicability of UCITA pursuant to the Opt-Out provision(s)
contained therein.

20. COMPLIANCE AND AUDIT RIGHTS. Licensee agrees to notify MathWorks
promptly upon discovery of any failure to comply with one or more
Licenses granted under this Agreement, or any failure to comply with
any other material term of this Agreement. To confirm Licensee’s
compliance with the terms and conditions of this Agreement, Licensee
agrees to allow MathWorks to audit Licensee’s use of the Programs,
and to provide MathWorks access to Licensee’s facilities and
computer systems, and cooperation from Licensee’s employees and
consultants, as reasonably requested by MathWorks in order to
perform such audit, all during normal business hours, and after
reasonable prior notice from MathWorks. If an audit discloses that
Licensee has failed to comply with one or more Licenses, and such
failure to comply could have in part or in whole been avoided by
Licensee having paid additional License fees to expand the scope of
the License or Licenses, then Licensee shall promptly pay MathWorks
such Licensing fees (at MathWorks’ then current rates) and, if such
unpaid License fees exceed 5% of the License fees paid to MathWorks
for the applicable Programs during the applicable period during
which such underpayment occurred, then Licensee shall, in addition
to paying the unpaid License fees, also reimburse MathWorks the full
cost of such audit.

21. HEADINGS. The inclusion of headings is for convenience of reference
only and shall not affect the construction or interpretation of this
Agreement.

22. ENTIRE AGREEMENT. This Agreement, and any applicable Addendum
thereto including any documents referenced therein are incorporated
herein by reference, and contain the entire understanding of the
parties and may not be modified or amended except by written
instrument, executed by authorized representatives of MathWorks and
Licensee. In the event of any conflict between this Agreement and
any purchase order executed by Licensee (whether executed before or
after this Agreement), this Agreement shall prevail.

THE MATHWORKS, INC. SOFTWARE LICENSE AGREEMENT - Deployment Addendum

This is an Addendum to The MathWorks, Inc. Software License Agreement
(the "Agreement"), and the terms and conditions of this Addendum are
incorporated therein. Each capitalized term used herein and not defined
herein shall have the meaning ascribed to it in the Agreement.

1. PURPOSE. The MathWorks, Inc. Software License Agreement (the
"Agreement") contains restrictions prohibiting Licensee from
modifying, distributing, or providing access to the Programs or any
Program Components, except as expressly provided in this Addendum.
If the Programs licensed by Licensee under the Agreement contain
Source Code or Object Code Program Components, then this Addendum
sets forth the Licensee’s rights with respect to creating
Applications and Derivative Forms and distributing Applications,
Derivative Forms, and Deployment Programs, as well as certain
additional obligations related thereto.

MathWorks or its Licensors retain all right, title, and interest in

68

its Programs, Program Components, and Derivative Forms of its
Programs.

2. USER CREATED FILES. This Addendum does not apply to M-files,
MDL-files, MEX-files, MAT-files, VHDL-files, Verilog-files, FIG-files
and P-files that are created by Licensee and that do not include any
code obtained from M-files, MAT-files, P-code, MDL-files, C/C++ files,
VHDL-files, Verilog-files, TLC-files, or other Source Code files
supplied with the Programs ("User Files"). Licensee may distribute,
sublicense, and resell without restriction, User Files.

3. NONCOMPETITION. Licensee agrees not to use the Programs, Derivative
Forms, Generated Forms, or Program Components to make or distribute
its own or a Third Party’s Application, a principal purpose of which,
as reasonably determined by MathWorks, is to perform the same or
similar functions as Programs licensed by MathWorks or which replaces
any component of the Programs. Licensee shall not otherwise use the
Programs to compete with the products or businesses of MathWorks,
including by distributing Libraries, or any form of an entire Program
or a substantial portion of a Program.

4. DEFINITIONS.

4.1. Application. A software file that Licensee has created by
either (a) using a MathWorks Program to compile or translate
Licensee created Source Code or (b) incorporating or linking any
part of any Source Code, library file, or other Program
Component provided with the Program. An Application must
contain original code developed by Licensee and must provide
substantial functionality not contained in, or provided by, the
Program Components that are incorporated into such Application.
If a software file created by a Licensee incorporates Program
Components, but does not meet the requirements of the previous
sentence, then it is a Derivative Form (as defined below). An
Application may contain Linked Object Code which, if such Object
Code was not Linked to the Application and was a standalone
file, would otherwise have been deemed a Derivative Form.

4.2. Application License. A license granted by Licensee to its
end-users for the installation and use of Licensee’s
Application.

4.3. Generated Forms. The output of the MATLAB Compiler, Real-Time
Workshop, Stateflow Coder, Simulink HDL Coder, Embedded Coders,

and other MathWorks’ code generation Programs in the form of
Source Code, as well as such Source Code converted to Object Code
or Linked forms.

4.4. Derivative Forms. A software file that Licensee has derived
from one or more Program Components (including without
limitation by incorporating, translating, or modifying, in whole
or in part, any Program Component), and which, if modified or
copied without MathWorks’ authorization, would constitute a
copyright infringement or breach of the Agreement. A software
file created by Licensee which qualifies as an "Application"
under the above definition shall not be deemed a Derivative
Form.

4.5. Linked. An executable or loadable file created by a compiler

69

or linker program combining Object Code module files.

4.6. MAT-file. The file format in which MATLAB stores data.

4.7. MCR Libraries. MATLAB Component Runtime support libraries and
other files for deployment of Applications created with the
MATLAB Compiler.

4.8. Object Code. The code created by a system compiler from source
code; also called "machine-readable code". Object Code can be
Linked with an appropriate linker to resolve address references
and may be combined with other Object Code for targeted
execution on a specific processor. Object Code includes "Object
Code libraries" and "shared libraries," which are groupings of
Object Code for specific purposes.

4.9. Program Component. Any portion of, or file provided with, a
Program.

4.10. Source Code. Human-readable program code written in a
higher-level language such as C, C++, Java, MATLAB,
MDL, VHDL, Verilog, or Fortran, which must be translated or
compiled into machine-readable language before it can be
executed by a computer. Source Code also includes header files
and other human-readable files necessary for a Program to be
compiled in the higher-level language.

4.11. Standalone Application. An Application created using
programming languages and tools other than the Programs, which
executes outside of the Programs.

4.12. Deployment Program. Any MathWorks Program that either (a)
generates Object Code or Source Code in response to user input,
or (b) contains executable functions or data accessed by an
Application (such as a DLL file).

5. DEPLOYMENT PROGRAMS. Licensed Users of MathWorks’ Deployment
Programs may automatically generate code from M-files,
Simulink/Stateflow diagrams, and other representations, into
Generated Forms. Furthermore, Licensee may copy and deploy these
Generated Forms for use outside of the Programs.

Not all Programs are eligible for deployment within Licensee’s
Application. For a list of Ineligible Programs see
www.mathworks.com/ineligible_programs.

5.1. MATLAB Application Deployment Programs

5.1.1. MATLAB Compiler. Licensee may use and distribute the MCR
Libraries for the sole purpose of running Licensed User’s
Application generated by the MATLAB Compiler. Licensee may
deploy, at no cost, copies of such Applications that
incorporate the MCR Libraries and compiled versions of
M-files from the licensed Programs required for the
Application. No further fees shall be due to MathWorks for
such deployment within Licensee’s Application, regardless
of whether the Application is distributed solely for
Licensee’s Internal Operations or to Third Parties.

70

5.1.1.1. Licensed User may include, by compilation for deployment,
only those select M-files from the licensed Programs
required for the Application.

5.1.1.2. In no event shall Licensee distribute any library
header files.

5.1.1.3. Licensee’s Application may not provide functionality or
behavior similar to that of the MATLAB command line.

5.1.1.4. Licensee’s Application may not allow operation of the
code generation capabilities of Programs.

5.1.1.5. Licensee’s Application may not provide access to an
entire Program or a substantial portion of a Program.

5.1.1.6. Licensee shall include the notice "MATLAB. 1984 -
[INSERT YEAR MATLAB VERSION PUBLISHED] The MathWorks,
Inc." in the deployed Application’s About Box, or
similar visible location, and in the applicable
documentation distributed with each copy of the
Application.

5.1.1.7. Licensee must state in the documentation or other
materials distributed with the Application that
Licensee’s limited rights to the deployment are
governed by a certain license agreement between
Licensee and MathWorks. Licensee may not modify or
remove any license agreement file (MathWorks or
Third-Party) that is included with the MCR Libraries
("MCR Library License"). Licensee shall insure that
any licensee of the Application must first accept the
terms of such MCR Library License prior to
installation of the Application.

5.2. Simulink Application Deployment Programs

5.2.1. Deployment Programs. MathWorks provides directories of C,
C++, Assembly, linker command files, template makefiles,

project files, and TLC source code files with Programs that
implement the real-time framework, code generation
instructions, libraries, and Application Programming
Interface (API) for use with the code generated by the
Simulink family of products, including Real-Time Workshop,
Stateflow Coder, Simulink HDL Coder, Embedded Coders and

other Programs. Licensee may use, copy, and modify these
files in source code form for different development targets
provided that they are only copied for development use in
connection with Real-Time Workshop, Embedded Coders,
Stateflow Coder, or other code generation Programs.

5.2.1.1. Licensee may copy and deploy these files outside of
the Programs in Linked Object Code form or Source Code
form, if only used in combination with code generated

by those Programs as part of a larger standalone
Application.

5.2.1.2. No further fees shall be due to MathWorks for such
deployment within Licensee’s Application, regardless

71

of whether the Application is deployed solely for
Licensee’s Internal Operations or to Third Parties.

5.2.2. Real-Time Windows Target. Licensee may not incorporate
Real-Time Windows Target into an Application for deployment
without contracting with MathWorks for an OEM or VAR
agreement.

5.2.3. xPC Target. Licensee may develop Applications that
incorporate Linked-in copies of xPC Target and those files
required for the Application that have been compiled or
otherwise obtained from Real-Time Workshop and/or Stateflow
Coder on a single development PC, and download that
Application to a target PC directly connected to the
development PC by either Ethernet or serial connections.
When running on xPC TargetBox, the Application may also
be used for standalone operation, without connection to the
development PC.

5.2.3.1. The right to distribute the Application beyond the
target PC is contingent upon acquiring a License for
the xPC Target Embedded Option. No further fees shall
be due to MathWorks for such deployment within
Licensee’s Application, regardless of whether the
Application is deployed solely for Licensee’s Internal
Operations or to Third Parties. Additionally, the
Embedded Option License allows for the deployment of
API DLL’s beyond the development PC. No further fees
shall be due to MathWorks for such deployment outside
of an Application, regardless of whether the API DLL’s
are deployed solely for Licensee’s Internal Operations
or to Third Parties.

6. OTHER SOURCE CODE AND SHARED OBJECT CODE LIBRARIES.

6.1. Programs may include selected Source Code and shared Object Code
library files that implement various documented application
programming interface capabilities of the Programs for which the
Source Code or shared library file is part.

6.1.1. Licensed User may use and modify the selected Source Code
files solely for creation of Licensee’s own Applications.
Licensee may copy and distribute Object Code compiled from
this Source Code, but only as either standalone Object Code
file (regardless whether a Derivative Form) or Object Code
Linked to the Application, and only for use with and
deployment of Licensee’s own Application.

6.1.2. Licensee may use, copy and distribute shared Object Code
library files (regardless whether a Derivative Form) for
deployment of Licensee’s own Application, but only if a
header file exists in the Program for the shared library
file. Licensee may not copy or distribute header files
themselves.

6.1.3. Licensee may not transfer Source Code, development rights,
or development capabilities for any Source Code or Object
Code to any Third Party.

72

6.2. MAT-files. Licensed User may create and distribute Applications
that read MAT-files using the MAT-file API, however, if such
Applications are distributed to Third Parties, they must also
implement MAT-file write capability.

7. DERIVATIVE FORMS. A Licensee shall only be permitted to distribute a
Derivative Form to Third Parties (a) to the extent expressly
permitted under Sections 5 or 6 of this Addendum, or (b) subject to
the requirements of this Section 7. A Licensee may only distribute a
Derivative Form to a Third Party under this Section 7 if such Third
Party is bound by a Software License Agreement with MathWorks that
requires such Third Party to treat such Derivative Forms received
from Licensee as such Third Party’s own Derivative Form thereunder.
Licensee agrees that if such a Third Party provides Licensee with
software that is a Derivative Form under the terms of such Third
Party’s Software License Agreement with MathWorks (or would otherwise
be a Derivative Form under the terms of this Agreement), then
Licensee shall treat such software as a Derivative Form hereunder as
if Licensee has modified or generated the software itself.

8. WEB APPLICATIONS. Only Programs licensed under the Network Concurrent
User or Designated Computer Installation Types may be called from
within a web Standalone Application, provided the web Standalone
Application does not provide access to the MATLAB command line, or any
of the licensed Programs with code generation capabilities. In
addition, Licensed Users may not provide access to an entire Program
or a substantial portion of a Program. Such operation of a Standalone
Application via a web interface may be provided to an unlimited number
of web browser clients, at no cost, for Licensee’s own use for its
Internal Operations, and for use by Third Parties.

9. APPLICATION LICENSING. For any distribution of Applications
containing Object Code or Generated Forms to:

9.1. Licensee’s internal organization: Licensee shall take
appropriate action by instruction, agreement, or otherwise with
any recipients of the Application, so as to enable Licensee to
satisfy its obligations under the terms of this Addendum and the
Agreement.

9.2. Third Parties: Your Application shall be accompanied by an
Application License whose terms and conditions are at least as
restrictive as the Agreement, unless the Application is part of
an embedded system that has no provision for licensing to its
end users.

9.2.1. The Application license for Third Parties must explicitly
exclude MathWorks and its Licensors from all liability for
damages or any obligation to provide remedial actions.

9.2.2. In no circumstance shall Licensee include a warranty for
any form of a Program that is inconsistent with or
additional to the warranty contained in the Agreement.

9.2.3. The additional translation, use, and deployment rights
granted in this Addendum are nontransferable without
MathWorks’ consent and shall not be conveyed in Licensee’s
Application license.

9.2.4. All copyright and proprietary notices for the Programs that
appear in the original form delivered to Licensee shall be
duplicated and included with Licensee’s own copyright

73

notices for the Application, wherever they appear.
9.2.5. Licensee may not remove any copyright, trademark, logo,

proprietary rights, disclaimer or warning notice included
on or embedded in any part of the deployed Application.

9.3. Notwithstanding the termination of the Agreement, all valid
Application licenses shall remain and continue in full force and
effect, and, if the Agreement was not terminated due to: (a)
Licensee’s failure to pay the applicable fees to MathWorks, (b)
Licensee’s violation of the License restrictions, or (c)
violation of MathWorks’ proprietary rights in the Programs; then
Licensee may continue to use the Programs to support
Applications that have been placed in use pursuant to an
Application License prior to the effective date of termination.

10. DISCLAIMER OF OBLIGATIONS AND LIABILITY,

10.1. MathWorks shall have no support or warranty obligations, and
disclaims all liability, for Applications developed or
distributed by Licensee.

10.2. Licensee agrees that prior to using, incorporating, or
distributing the Programs in any Application, it will
thoroughly test and validate the Application and the
functionality of the Programs in that Application and be solely
responsible for any problems or failures.

10.3. Licensee will defend, indemnify, and hold harmless MathWorks
and its Licensors, officers, directors, employees, agents and
resellers from and against any damages, liabilities, costs and
expenses (including reasonable fees of MathWorks’ attorneys)
arising out of any Third Party claim or demand based on or
arising from, out of or in connection with (i) the creation,
use, or distribution of any Applications or (ii) the use of the
Programs by Licensee.

11. GENERAL. Licensee acknowledges and agrees that a breach of the
obligations set forth in this Addendum shall be a material breach of
the Agreement.

MATLAB, Simulink, Stateflow, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc.
Java is a trademark of Sun Microsystems, Inc.

September, 2006

74

E Database Checklist

CANARY Configuration Checklist - Input/Output

Is CANARY going to connect directly to a database, or is it going to get
data from files?

Database Configuration

What type of database is this? E.g., MySQL

Does the database use ODBC or a direct connection?

If ODBC is used . . .
what is the DSN?

If a direct connection is used . . .
does it require a username and password?
what is the URL and port number?
is there a special JDBC driver to use?

What table(s) should CANARY look in for new data?

What is the name of the field that contains timestamps?

What field contains the SCADA tag name for a piece of data?

Is there a SCADA quality field for each piece of data?
What is the field name?
What are the acceptable values?

Files Configuration

Can your SCADA system output data in one of the formats shown in the
CANARY User’s Manual?

which format?

Will the SCADA system append or overwrite the data files it produces?

What are the file names the system will produce?

75

tbaranow
Highlight
Again, I think this should have some text describing what is in this appendix.

F Sensor Configuration Checklist

CANARY Configuration Checklist - Sensor Stations

Each group of sensors at the same location, along with any operation parameters that are associated with them, is
referred to in the CANARY documentation as a “monitoring station” or “sensor station”. This checklist is designed to
help you collect the necessary information to configure CANARY for your system’s sensors. You will need to complete
one copy of this sheet for each monitoring station.

Input/Output Checklist

What is the name of this station?

What is the database table name or file name where data for this station is located?

Data Lists

What water-quality signals are located at this monitoring station?

W. Q. Sensor SCADA ID Tag Has Alarm?
Chlorine MTAX_HTCH_CL2X_V Yes

What alarm signals should be watched?

For Sensor SCADA Alarm Tag Normal Value
Chlorine MTAX_HTCH_CL2X_ALM 0.0

Are there any operations data that should also be included?

Operation SCADA ID Tag Notes

76

tbaranow
Highlight
Same comment as Appendix F. The paragraph below would be sufficient, so I would just get rid of one of the headings.

tbaranow
Cross-Out

tbaranow
Replacement Text
"sensor station."

	Introduction
	Installation
	Running CANARY

	Design
	Off-line Mode
	On-line Mode
	Event Detection Algorithms
	Terminology

	Water Quality Estimation and Residual Classification
	Normalization Window
	Linear Filter Prediction (LPCF)
	Multivariate Nearest Neighbor (MVNN)
	Using an External Function (JAVA)
	Combining Estimation Restuls (CONSENSUS)

	Water Quality Event Determination
	Binomial Event Discriminator (BED)
	Water Quality Pattern Matching

	CANARY Inputs
	Column-based Inputs
	CSV Files
	Field Based Databases

	XML Based Input
	EDDIES Databases
	Native CANARY Data Files

	CANARY Outputs
	Console Output
	Files Created
	Database Output
	EDDIES and XML outputs

	Configuration Details
	Basic Configuration Options
	The run-mode tag
	The data-dir tag
	The log-file tag
	The classpath tag

	Input, Output and Message Options
	The datasource tag
	The messaging tag
	The input-options and output-options tags
	The timing-options tag

	SCADA and Monitoring Options
	The general-settings tag
	The signal tag
	The algorithm tag
	The use-algorithm tag
	The clustering tag

	The location tag
	The use-input and use-output tags
	The use-signal tag
	The use-algorithm tag

	Sample Configuration Files

	Training CANARY and Choosing Parameter Settings
	Training Steps

	References
	EDDIES Integration
	EDDIES Databases
	EDDIES Database Configuration Entries
	Algorithm Configuration through EDDIES

	XML Messaging Systesm
	Java Algorithm Plugin API
	License Agreements
	GNU Lesser General Public License
	MATLAB Software License

	Database Checklist
	Sensor Configuration Checklist

