Notes from Jonathan’s Visit of June 4-6, 2008
The three top priority tasks for PICO/PEBBL are as follows:

1. Do the computational work for PEBBL paper, and finish writing it.

2. Jean-Paul and Jonathan complete their work on surrogate objective MIP heuristics (“generalized feasibility pump”) for a talk already promised for INFORMS and possibly ICS too.

3. General work on improving PICO performance, specifically tuning the use cuts in serial, and then getting cuts to work fully in parallel.

Other topics, plus details of the topics above:
PEBBL Paper

Most of the paper has already been drafted, but computational results are still needed. In November, we had settled on two possible applications, the peptide-QSA (quadratic semi-assignment) application that has already been coded, and the QAP (quadratic assignment problem). This time Bill and Jonathan discussed the peptide application extensively, and so far it still seems worth pursuing. Key points:
· We will call it “a peptide docking application,” rather than “QSA”. That’s because the code has many application-specific optimizations and might not be efficient or even usable for the general quadratic semi-assignment problem.

· Bill thinks the method is still reasonably competitive for the application, but will try to look further into Harvey’s recent papers to be sure.
· A key feature of the code is its “DEE” (dead end elimination) variable fixing strategy. Suppose:

· The current subproblem is P
· In P and its children, there is a side chain j that has at least two possible configurations r and s.

·
[image: image1.wmf]r

z

denotes the objective value of some child of P in which side chain j has configuration r.

· Similarly,
[image: image2.wmf]s

z

denotes the objective of some value of any child of P in which side chain j has configuration s.

Then the DEE procedure can compute a lower bound
[image: image3.wmf]jrs

D

on
[image: image4.wmf]rs

zz

-

. Normally, if this bound is positive, then configuration r can be eliminated from further consideration. If we are doing enumeration, Jonathan and Bill determined that we can still use DEE, but the elimination condition is no longer
[image: image5.wmf]0

jrs

D>

. Instead,

· Let
[image: image6.wmf]a

is the absolute enumeration tolerance.

· Let
[image: image7.wmf]f

be the “fathom value” that can be obtained from PEBBL (this is used, for example, to set the LP dual cutoff in PICO).

Then the fixing criterion should be
[image: image8.wmf]{

}

min,()

jrs

zP

af

D>-

. In order for DEE to work with enumeration, we’ll have to modify it to use this criterion.
· Bill also wants to make some simplifications to the code, eliminating strategies and options that he once experimented with, but are no longer being used.

· Bill also needs to add pack/unpack methods to the code so that it can run in parallel

· Bill also needs to think about whether there is any simple incumbent heuristic strategies the code can use during ramp-up (Jonathan can help with this if needed).

· If we don’t get good results, we can fall back and try the QAP application.

Platforms

There was some discussion of the best hardware platform for both the PEBBL paper and other PICO/PEBBL computational papers,. Apparently, the Red Storm system is being “hogged” by a single application and is not available. Locally, we will try to use Odin. However, we should also consider the recently installed New Mexico NMCAC “Encanto” system which has 3,584 quad-core Xeons (14,336 cores), apparently not highly utilized. Bill/Cindy/JP will look into getting time on that machine.

MIP Heuristics

This topic is pretty close to its state in November, although a few things did get done (for example, Cindy did eliminate the duplication of runLP methods between milpNode and lpBasedHeuristic classes).

Randomized rounding (RR) seems to be working within the general heuristic framework, but Cindy wants to enhance it to deal more intelligently with SOS constraints. Jonathan suggested we not try to get too fancy (for example, by worrying about SOS sets that overlap) and keep the heuristic “quick and dirty”.

Dive and Cut (DC) also seems to be working generally well within the general heuristic framework, but there are occasional errors. Please document any bombs to Jonathan, and he’ll try to fix them (possibly asking Cindy for help).

Feasibility Pump (FP) is working within the general framework. However, JP needs to tune the default parameters so it doesn’t gobble so much CPU time. JP (with help from Jon) will work on merging in many aspects of the old Eckstein-Nediak heuristic, and trying to identify which strategies work the best. Note added after visit: we can call the generalized class “SO” (for surrogate objective; other suggestions for a general name are welcome); possibly, we could run several different copies of SO-class heuristic at the same time, each configured with different parameters. After we have finished the code merger, confusing remnants of the old Eckstein-Nediak stuff can be deleted from the PICO codebase.

Fractional Decomposition Tree (FDT): Cindy has incorporated FDT into the general framework, but needs to do more testing.
There are several other heuristics under discussion, characterized as “CPU slurpers” – namely RINS and local branching. We are going to hold off implementing these heuristics for the moment, because they may require extensions to our basic framework to be employed efficiently. Ideally, in particular, we might want to dedicate particular processors to executing them, or have several processors cooperate on a single execution of such a heuristic – unfortunately, PICO/PEBBL aren’t structured to easily accommodate such techniques at present. We might want to put FDT in this class eventually.
Management of multiple light- and medium-weight heuristics in a parallel environment, without CPU hogs like RINS or local branching, would probably be sufficient for another paper. The RR, DC, and various forms of FP/SO heuristic, possibly combined with FDT, would likely be enough. After Jonathan and JP finish their work on FP/SO, and possibly Cindy does more on FDT, we should spend some time tuning their combined performance and ramp-up characteristics.
Finally, the summary statistic output from MIP heuristics is printed in a messy, redundant way in parallel. Jonathan is already working on fixing that.

Enumeration

Jonathan’s results running PEBBL enumeration of knapsack problems on QED revealed some problems with message flooding – basically, if too many messages arrive a processor in a given span of time, the processor hangs. This may be worse on QED than on some other systems, and for a more realistic application that does not generate such a constant flood of feasible solutions, it may not be an issue.

Enumeration in PICO seems a little buggy after Jonathan’s restructuring allowing general integer variables. Jonathan and Cindy need to work on it.

Currently, PICO enumeration with general integer variables can cause nodes to have
[image: image9.wmf]1

k

+

 children, where k is the number of general integer variables not at their bounds. Jonathan suspects this can be reduced to just 1 child with one additional cut by using a convexity/intersection cut analysis. However, we would need access to the simplex tableau, much as when generating Gomory cuts. Jonathan needs to think about this issue, which could require significant coding.

Currently, PEBBL differs somewhat from other solvers/frameworks that try to return multiple solutions. PEBBL only has the concept of solutions being identical or not identical – it has no graduated notion of “diversity”. Other codes can use some kind of diversity measure, and try to return only “sufficiently diverse” solutions. But it is not clear exactly what criteria the returned solutions satisfy. On the other hand, PEBBL exhaustively enumerate all non-identical solutions that meet certain well-defined criteria. An interesting topic would be to try for the “best of both worlds” – to be able to use a general diversity measure to assess the “distance” between different solutions, and return a clearly defined set of solutions. We will try to discuss these issues with Dave Woodruff at the upcoming INFORMS and/or ICS meetings.

Other ACRO/PICO Topics
As mentioned above, the top priorities are

· Tuning serial performance and the use of cut finders. Cindy also needs to work through the latest CGL releases and see if we can update PICO to use them. Wee need to figure out which CGL cuts are local and which are global.
· Making cuts fully functional in parallel.

Once these are addressed, we can begin thinking about doing computational work and writing a paper about the basic design/operation of PICO. This paper can refer to the PEBBL paper and any papers we’ve written about MIP heuristics.

In addition, some other points that should be addressed (some left over from my previous visit)

· LP objects are showing some weird behavior when copied; Bill made a corresponding Bugzilla item.

· Cindy also has applications where she wants to use specialized branching procedures – for example, a 4-way branching procedure for an SOS-like constraint of the form
[image: image10.wmf]j

jJ

xk

Î

=

å

. She will draft a specification document for a general software framework in which to embed such procedures (including things like pseudocosts etc.), and then Jonathan will critique it.

· Bill mentioned the idea of having parameter “packages” that could easily be invoked as a group. We did not get to discuss this fully, and I’m not sure whether he meant runtime parameters or configuration parameters.

· Some users would like more verbose information on what PICO’s doing (i.e. running heuristics, initializing pseudocosts, etc.)

· When Jonathan updates the repository, no e-mails are sent. This appears to be an insoluble problem, but it doesn’t hurt to ask again.

· The PICO output format needs to be enhanced to fully support COOPR.

· Cindy has some situations in which she wants to use PICO as a code base, but only for pure LP’s plus a separation algorithm, with no branching. We do not have very good support for these kinds of applications at the moment.

Duringt the visit, we did manage to resolve the issues surrounding the old DEBUGGING preprocessor symbol. There is now a configuration option --disable-debug-output. If used, it calls all the DEBUGPR-class macros to be replaced with no-ops. That allows us to configure for production runs where we don’t want to check the verbosity level constantly. The OUTPUTPR-class macros are not affected.

Code Management
PICO was linked to a fairly old version of COIN-OR. Bill has linked the ACRO-PICO trunk to a more recent version (CBC-Stable 2.0, which includes everything we need from OSI and CGL, plus CBC, which we don’t really need). We also decided to have the ACRO-PICO branch coin_stable attempt to link to the most recent stable version of CBC. The nightly build process should alert us if there is a new stable version of CBC, and attempt to run PICO with it, alerting us to the results.
It seems that checking out PICO no longer checks out ALPS/BLISS/BiCePs, which is good. However, there are some issues remaining:

· If one configures with/without GLPK, Soplex, etc., are these modules still compiled?

· We need a configuration option to control builds of the CBC executables (and object files?). We check out CBC because it contains mutually compatible versions of OSI and CGL, but most users won’t need CBC itself, or want to waste time compiling and linking it.

Bill needs to do a major release of ACRO this summer for DAKOTA/COLINY users etc. This will be accompanied by only a minor release of PICO.

We will target November for a major ACRO release that includes a major PICO release. Then we should be able to announce the release definitively at ICS in January.

The coin_stable branch should not be used for development. Typical incremental development can be done in the trunk (default) branch. However, Bill encouraged people (specifically Cindy) to make their own branches of the repository (“sandboxes”) if they plan on having large amounts of modified code that they do not commit for long periods. When the code is ready commit, we can try to use SVN to merge the branches. JP has created a heuristic_sandbox branch so he and Jonathan can fiddle with MIP heuristics. Here are the instructions for making a branch called sandbox:

#

Create a copy of acro-pico

#

svn cp https://software.sandia.gov/svn/public/acro/acro-pico/trunk \

 https://software.sandia.gov/svn/public/acro/acro-pico/branches/sandbox
#

Create a branch of the core PICO code

#

svn cp https://software.sandia.gov/svn/public/acro/pico/trunk \
 https://software.sandia.gov/svn/public/acro/pico/branches/sandbox
#

Update the externals in the acro-pico sandbox to point to the PICO

sandbox.

#

svn.a checkout --ignore-externals \

 https://software.sandia.gov/svn/public/acro/acro-pico/branches/sandbox
cd sandbox/packages

edit the file Externals and replace

pico https://software.sandia.gov/svn/public/acro/pico/trunk

with

pico https://software.sandia.gov/svn/public/acro/pico/branches/sandbox
Update externals by executing

 svn propset -F Externals svn:externals .

#

The sandbox branch of acro-pico now points to the sandbox of PICO
#

svn.a commit
#

Go back to weh_sandbox directory

#

cd ..

svn.a update

Bill mentioned the idea of doing unit tests on things like the LP interface. However, I don’t think we ever got to discuss this matter properly.

We also discussed general nightly testing:

· We are still not running nightly tests of the parallel layer of PEBBL/PICO, even for correctness. Bill promised take the old QA suite and “QA lite” and try to embed them in the current EXACT-based testing framework. Their testing of parallelism is not very thorough (up to 5 processors), but that is sufficient to find many problems. Jonathan is available to help with this effort.

· We also discussed doing nightly performance testing as well as correctness testing. The nightly tests have a time limit, so we already detect outright hangs or truly massive degradation in performance. But it would be nice to detect significant performance degradation automatically, and include it in the nightly test reports. The idea is to maintain a database of average run times for each test, along with a tolerance (which could depend on the particular test). For example, if the tolerance is 15%, and a run takes over 15% more time than the average in the database, a “performance error” will appear in the test report. If we ignore these long enough, the average will get pulled up enough for the errors to stop appearing.
Miscellaneous Topics

· Jonathan has money for a new workstation and was considering a Mac Pro. However, it seems that it will be safer to go with a Linux box.
· Bill brought Jonathan up to speed on the COOPR group of optimization-related Python tools being developed at SNL. Jonathan’s colleague Paulo has developed a mechanism for Python programs to read AMPL-generated .nl files describing nonlinear optimization problems, and may be able to add a .sol writer soon. We may want to incorporate this capability into COOPR. Paulo would like a pointer to the COOPR code so he can play around with it.

-- 6 --

_1274275140.unknown

_1274275210.unknown

_1274523703.unknown

_1274525772.unknown

_1274275335.unknown

_1274275157.unknown

_1274274913.unknown

_1274274942.unknown

_1274274877.unknown

_1274274826.unknown

