ASC Software Quality Plan: Part 1

SAND2005-xxx

Version 1.0
 Unlimited Release
Printed: December 03, 2004

Acro Quality Assurance Plan

Acro QUALITY ASSURANCE Plan
November 11, 2008
William E. Hart

Discrete Math and Complex Systems Department
Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185-0826
1
Introduction
This quality assurance document defines the Quality Assurance (QA) plan for the Acro Project, which manages the development of the Acro optimization software. Acro integrates a rich variety of optimization libraries and solvers that have been developed for large-scale engineering and scientific applications. Acro was developed to facilitate the design, development, integration and support of optimization software libraries. Thus, Acro includes both individual optimization solvers as well as optimization frameworks that provide abstract interfaces for flexible interoperability of solver components. Furthermore, many solvers included in Acro can exploit parallel computing resources to solve optimization problems more quickly.
This document provides a brief description of the overall practices that are being addressed to ensure quality assurance in the design, implementation and application of Acro. The quality practices described here are adapted from the software quality practices described in the ASC Software Quality Plan
 and EPA guidance for Quality Assurance Project Plans. The ASC Software Quality Plan was generated to conform with the SNL corporate and DOE QC-1 revision 9 standards.
A few practices are handled at the project level, and their instantiation details and evidence are provided in this document after the practice statement. Other practices are described in the Task Work Plans, and thus they are not described further in this document.

1.1
Quality Definition and Goals

The intent of the practices summarized herein is to promote quality in the Acro project. research, software implementation and application of the capabilities of the Acro optimization software. Following the ASC Software Quality Plan, the following quality definition provides the basis of the quality assurance efforts summarized in this document:
Quality - Conformance to customer requirements and expectations.
Expectations are often defined as customer needs that have not been explicitly stated as requirements. The following quality goals motivate the QA practices that we describe:
· support a flexible framework for researching new optimizers,

· develop robust, reliable optimization solvers,
· facilitate the application of Acro solvers to real-world, large-scale problems,
· manage quality metrics, and
· ensure continual quality improvement of the ongoing research and development activities.
1.2 Quality Assurance Practices
This document adopts the breakdown of QA practices that are similar to those recommended by the ASC Software Quality Plan and EPA’s Guidance for Quality Assurance Project Plans for Modeling:

· Project Management

· Computational Modeling and Algorithm Development
· Software Engineering

· Data Generation and Acquisition
· Model and Software Verification
· Training

The Assessment and Oversight category included in the EPA QAPP was intentionally omitted here. In its place, each practice is associated with artifacts that reflect how those practices can be assessed.
Each of these QA categories is described in the remaining sections of this document. We provide an overview description that provides a high level discussion of the practices that are involved in each category, along with associated artifacts. The practices are specific research, development and deployment activities, which generate artifacts: deliverables and work products that can be used to quantify compliance with QA goals. Whenever possible, we use metrics and measurements to provide quantitative insight into the effective quality of the process that has been followed within the Acro project.
2
Project Management

Project Management is the systematic approach for balancing the project work to be done, resources required, methods used, procedures to be followed, schedules to be met, and the way that the project is organized.
2.1
Determination of Applicable Practices and Level of Formality

The level of formality (LOF) for a project relates to how important it is to perform practices in detail given their consequences. For example, a basic research project will likely have a low level of formality, since it is exploratory in nature. Thus, there is limited value for practices like planning software releases. However, a project working on a capability that directly impacts the potential loss of human life would have a high level of formality. As such, it is very important to maintain QA documentation for many practices. The project’s Work Plan will specify the applicable level of formality appropriate to each task individually.
Table 1 shows how LOF is categorized by the ASC Software Quality Plan. The LOF is equivalent to the “graded approach” outlined in the EPA guidance for Quality Assurance Project Plans. When applying the graded approach, the EPA identifies two aspects that are important for defining the level of QA effort required for a project: the intended use of the model and the project scope and magnitude. In Table 1, these correspond to the respective axes consequence of failure and likelihood of failure.
High formality requires detailed documentation covering all aspects of the project; formal reviews inviting all stakeholders and other necessary experts; detailed and approved test plans; and customer waivers for deviation from any required practice or specification. Low formality allows documentation such as project notebooks and emails; less formal team-reviews; limited testing of research code until it is determined that the code will become a deliverable; and other relaxed procedures as approved by the task P.I. Medium level of formality is in between these two extremes and specific practice implementations require only the project manager approval unless the customer specifically requires customer approval for specific work product elements.
PR1. Perform a risk-based assessment to determine level of formality and applicable practices.

2.2
Requirements Analysis

The purpose of requirements analysis practices is to capture, develop, validate, track, and control the project requirements. These requirements typically span hardware, software, operations, support, documentation, product training, and other aspects. Requirements are based upon project mission, stakeholders’ stated and implied needs, and organizational commitments. Although needs are not requirements they are considered along with requirements in order to improve quality. Requirements are inputs to other practice areas.

PR2. Identify stakeholders and other requirements sources.

PR3. Gather and manage stakeholders’ expectations and requirements.

PR4. Derive, negotiate, manage, and trace requirements.
2.3
Risk Management

Risk management is the activity of identifying, addressing, and mitigating sources of risk before they become threats to successful completion of a project. A risk is a combination of the consequence and likelihood of an event. Risk management spans the lifetime of the project. This practice area seeks to identify only primary and reasonably likely risks in the following areas: organizational, regulatory, technical, and project management. Risk management is intended to mitigate consequences and/or likelihood of these identified risk events.

PR5. Identify and analyze risk events.
PR6. Define, monitor, and implement the risk response.
2.4
Project Planning, Tracking and Oversight

The purpose of project planning, tracking, and oversight is to guide project implementation while balancing, monitoring, and analyzing project quality, cost (including cost of quality), schedule, and performance. Project planning includes preparing a plan that describes how the project will be performed and managed. The plan typically includes at least a statement of work, project constraints and goals, project deliverables, a project timeline, an assessment of required resources, and the availability of the resources. Tracking and oversight includes taking corrective actions as necessary. Corrective actions bring projected accomplishments and results back into compliance. Corrective actions could include adding resources to meet schedules, modifying the schedule, adding project budget, modifying cost criteria, and re-negotiating requirements or acceptance criteria.

PR7. Create and manage the project plan
PR8. Track project performance versus project plan and implement needed (corrective) actions.

3
Model and Algorithm Development

Modeling and analysis capabilities can be applied to gain insight into an application. In some contexts, these activities can be separated, such as when the goal of a project is focused simply on developing a detailed model, or when a given model is assumed and the focus is on developing algorithms that can provide insight into this model. More generally, modeling and algorithmic development are often closely related activities. In many contexts, algorithmic issues arise in the design/implementation of software that can effectively model large-scale systems. Similarly, in combinatorial applications modeling and algorithmic design are often closely related because the combinatorial structure is used to design the algorithm. However, these activities can be distinguished from software engineering efforts, which are more specifically focused on ensuring that software generated has high quality itself.
3.1
Model and Algorithmic Design
The model design process may include activities like theoretical development, mathematical formulation, and identification of input data. Algorithmic design is often closely coupled with model design, as algorithmic issues arise when deciding how to formulate models and how to analyze their properties. This practice area focuses on activities that ensure that these design activities accurately reflect and abstract the properties of the underlying physical or conceptual process that is being modeled.

Modeling assumptions, related algorithmic formulations and the limitations of these capabilities will be reviewed and critiqued internally within our research group at project meetings or dedicated peer reviews depending upon the required level of formality. Preliminary reviews focus on initial ideas or direction for a specific work product. These reviews seek both a “sanity check” and consider possible alternatives. Detailed reviews focus on the completed work product to ensure its acceptability and typically will invite customer participation. Additionally, external reviews are conducted through peer-reviewed journal articles and conferences.

PR9. Document designs for models and algorithms
PR10. Conduct peer reviews of modeling assumptions and algorithmic formulations

3.2 Preliminary Software Development
Preliminary software development efforts are targeted at developing “proof of concept” demonstrations that modeling and algorithmic techniques will prove effective. These efforts typically employ small-scale or synthetic data sets to demonstrate the capabilities of the software. Furthermore, software design processes are generally minimized in favor of generating a basic modeling or analytic capability. Preliminary software development is done at low level of formality unless specifically (by task and work breakdown) required to be at higher level of formality.
PR11. Document preliminary software implementation

3.3 Testing Models and Algorithmic Techniques
Model testing is needed to characterize the uncertainty that can be expected in modeling outputs given uncertainties in model designs along with uncertainties in data used to apply models. Similarly, algorithmic tests are needed to confirm that analytical predictions match expected values. The following practices ensure that testing will be done to validate models and algorithms in this manner.
PR12. Document sources of uncertainty in modeling and algorithmic methods

PR13. Peer-review of modeling and algorithmic outputs

4
Software Engineering

Software engineering is a systematic approach to the specification, design, development, test, operation, support, and retirement of software. The software engineering activities identified in this section are Software Development, Integration of Third Party Software, Configuration Management, and Release and Distribution Management. Note that Preliminary Software Development is addressed in section 3.2 and does not follow this section.
4.1
Software Development

The purpose of software development processes is to generate a correctly working product for the customer; this product is often, but not always, software. Generally, software development processes include design, implementation, and testing of the software products or reuse of existing implementations. The specific instantiation of these practices depends on the level of formality. Preliminary reviews of work products are done within the team. Final reviews invite customer participation and are generally more formal.
PR14. Communicate and review design
PR15. Create required software and product documentation
4.2
Integration of Third Party or Other Software
Projects use or incorporate third party or other existing software products in order to satisfy needed capabilities without incurring the cost of redeveloping those capabilities. Such software may be a simple library, an integrated set of libraries, compilers and linkers, or even an operating system. Sources of such software may be commercial, open source, other SNL projects, or research efforts. This practice area focuses on integration activities such as identifying, tracking, establishing trust in, assimilating, or honoring agreements (for example, protecting intellectual property) for third party or other existing software products.
PR16. Identify and track third party software products and follow applicable agreements
PR17. Identify, accept ownership, and manage assimilation of other software products
4.3
Configuration Management
The purpose of configuration management (CM) is to provide a controlled environment for development, production, and support activities. CM includes identifying which software product artifacts are to be managed; maintaining version controlled baselines of these artifacts; providing an issue tracking system for recording associated issues or change requests related to product artifacts; and tracking the status of these issues throughout the project’s lifetime. Configuration management must ensure retrieval of any baselined artifact over the project’s lifetime.
PR18.
Perform version control of identified software product artifacts
PR19.
Record and track issues associated with the software product.

PR20.
Ensure backup and disaster recovery of software product artifacts.
4.4
Release and Distribution Management

The purpose of the release and distribution practices is to manage versions of the software product that are distributed to customers. Release management includes handling the requests for a release as well as preparation of the release. A release may include all elements of the product or a defined subset of the product. When the project team has completed all artifacts necessary for a release the team creates a baseline in preparation for distribution. The baselined product undergoes release certification before being distributed and supported. Release certification ensures that all release criteria are satisfied, that identified release artifacts are adequately reviewed, and that all planned testing is completed and satisfactory.

PR21.
Plan and generate the release package.
PR22.
Certify that the software product (code and its related artifacts) is ready for release and distribution.

5
Data Acquisition and Management
Input data for model development and application efforts are typically collected outside of the modeling effort or generated by other models or processing software. These data need to be properly assessed to verify that a model characterized by these data would yield predictions with an acceptable level of uncertainty. To this end, the following practices address various aspects of data acquisition, the calibration of the model based on these data, management of the data, and the software/hardware configuration needed for data processing.

5.1
Model Calibration

Models used for computational analyses require input data that relates to a particular application context. These models often require calibration of modeling parameters using this input data. These practices document the procedures for calibrating the model that will perform the designated predictive task, including records for how calibration is performed and maintained.
The objective of model calibration is to determine a set of model parameters that provide a fit of the model to the observed data that is somehow optimal under initial and boundary conditions that would be expected in normal operations of the model. Identification of these model parameters can be accomplished by trial and error calibration or inverse parameter estimation. Typically, there is not a unique set of model parameters that will provide the optimal fit, and acceptance criteria defining the acceptable level of mismatch between the model and the observed data are determined. These criteria incorporate the repeatability of the instruments that created the data set and this repeatability information is obtained from the source of the data. Calibration practices include recording the mismatch in the data as a function of different input parameter values. The frequency with which model calibration must be conducted is dependent on the data, the model and the intended use of the mode; however, any time model parameters are varied, the calibration process is repeated

PR23. Document objectives and methods of model calibration activities [acceptance criteria, frequency, method of assessing goodness-of-fit]
PR24. Document sources of input data used for calibration.
5.2
Non-Direct Measurements

Some types of data needed for project implementation or decision making are obtained from non-measurement sources such as computer data bases, programs, literature files, and historical databases. The following practices document these data sources and describe the intended use of this data.
PR25. Identify requirements for non-direct data and how this data will be acquired [e.g. quality standards required for this data]

5.3
Data Management
Data management occurs at many stages of a project, including initial data acquisition, data transmission within the project team, data processing, and final use. The following practices document the procedures for data management to help ensure high confidence in final analyses based on this data.
PR26. Develop processes for managing data [e.g. labeling process, archiving policy, addressing data sensitivities]
PR27. Document hardware and software used to process data.

6
Software Verification
The purpose of software verification is to ensure (1) that specifications are adequate with respect to intended use and (2) that specifications are accurately, correctly, and completely implemented. Software verification also attempts to ensure product characteristics necessary for safe and proper use are addressed. Software verification occurs throughout the entire product lifecycle.

Software verification activities are an integral part of software development, operation, and support practices. In this context, the goal is to detect potential problems as early as possible. Software artifacts to be verified typically include specifications, requirements, design, code, third party libraries, software verification plan, test cases, product documentation, and training package. If these artifacts are changed, retesting and reevaluation of the changes will need to occur.

PR28.
Develop and maintain a software verification plan.
PR29.
Conduct tests to demonstrate that acceptance criteria are met and to ensure that previously tested capabilities continue to perform as expected.
PR30.
Conduct independent technical reviews to evaluate adequacy with respect to requirements.

7.
Training
The goal of training practices is to enhance the skills and motivation of a staff that is already highly trained and educated in the areas of mathematical modeling, scientific software development, algorithms, and/or computer science. This practice addresses training needs of the project teams especially for, but not limited to, following the project teams’ process implementation. The purpose of training is to develop the skills and knowledge of individuals and teams so they can fulfill their process and technical roles and responsibilities. Project teams need to ensure that the training needs of the project are satisfied in accordance with their project plan.

PR31.
Determine project team training needed to fulfill assigned roles and responsibilities.

PR32.
Track training undertaken by project team.

References

1. Corporate Process Requirement No. CPR001.3.2, Corporate Quality Assurance Program, Sandia National Laboratories, August 2003.

2. Corporate Process Requirement No. CPR001.3.6, Corporate Software Quality Assurance, Sandia National Laboratories, December 2001.
3. Department of Energy, DOE/AL Quality Criteria (QC-1), Revision 9, February 5, 1998. ailable at http://prp.lanl.gov:8686/.
4. Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan, Part 1: ASC Software Quality Engineering Practices, Version 1.0, Sandia Report SAND2004-6602.
APPENDIX A. Table 1. Risk-Based Assessment to Determine Level of Formality.
	Consequence of Failure
	Critical

Potential for loss of human life, grave environmental damage, grave harm to the national or SNL’s interest.

Examples:

· Weapon qualification decision, no test alternatives

· Potential for Significant Finding Investigation
	
[image: image1]

	
	High

Potential for serious injury, serious environmental damage, serious harm to the national or SNL’s interest.

Examples:

· Weapon qualification support, supplements tests

· Potential for Significant Finding Investigation

· Safety related
	

	
	Medium

Potential for minor injury, minor environmental damage, minor harm to the national or SNL’s interest,

failure to make major milestones, or customer must go to great lengths to accommodate budget impact.

Examples:

· Early parts of Life Extension Projects provide a basis for refining design decisions

· Design trade-off study
	

	
	Low

No potential for injury, no environmental damage, no harm to the national or SNL’s interest,

failure to make minor milestones or minor budget impact.

Examples:

· Exploratory scoping (what is happening with this problem?)
	

	

	
· Small and simple project

· Requirements well-known & stable

· Small team and good communication

· Organization is stable
	
· Large and complex project

· Requirements ill-defined or unstable

· Large team and complex communication

· Organization is unstable

	
	Likelihood of Failure

Appendix B. Table 2. Summary of QA practices
	ID
	Brief Description

	PR1
	Risk-based assessment to determine level of formality

	PR2
	Identify stakeholders and requirements sources

	PR3
	Gather Requirements and expectations

	PR4
	Derive, negotiate, manage and trace requirements

	PR5
	Identify and analyze risk events

	PR6
	Define, monitor and implement risk response

	PR7
	Create and manage project plan

	PR8
	Track performance and implement corrective action

	PR9
	Document designs for models and algorithms

	PR10
	Peer review modeling assumptions and algorithmic formulations

	PR11
	Document preliminary software implementation

	PR12
	Document uncertainty in modeling and algorithmic methods

	PR13
	Peer review modeling and algorithmic outputs

	PR14
	Communicate and review software design

	PR15
	Create software and required product documentation

	PR16
	Identify 3rd party software

	PR17
	Manage 3rd party software

	PR18
	Version control

	PR19
	Track issues

	PR20
	Backup and disaster recovery

	PR21
	Plan product release

	PR22
	Certify product release

	PR23
	Document objectives and methods for model calibration

	PR24
	Document sources of input data for model calibration

	PR25
	Non-direct data requirements and acquisition

	PR26
	Manage Data

	PR27
	Document hardware and software used to process data

	PR28
	Develop and maintain a software verification plan

	PR29
	Verify software meets acceptance criteria

	PR30
	Independent technical reviews

	PR31
	Determine Training Requirements

	PR32
	Track Training

Low Level of Formality

High Level of Formality

Medium Level of Formality

� The Advanced Simulation & Computing (ASC) program is a DOE program that is focused on developing advanced modeling and simulation capabilities that leverage high-performance computing resources.

�Does this document include descriptions of how the practices are implemented?

�Where would this be documented within Acro? Here? Should this be documented for every release?

�Where should these be documented? I think that these should be documented for every release.

-56-

-4-

