M. Argaez, R. A. Tapia, and L. Velazquez, Numerical Comparisons of Path-Following Strategies for a Primal-Dual Interior-Point Method for Nonlinear Programming, *Journal of Optimization Theory and Applications,* Vol. 114, No. 2, 2002.

B. M. Averick, R. G. Carter, J. J. More, and G.-L. Xue, *The MINPACK-2 test problem collection,* Preprint MCS-P153-0692, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, 1992.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Convergence of quasi-Newton matrices generated by the symmetric rank one update,* Mathematical Programming, * Vol. 50 pp. 177--195, 1991.

R. B. Davies, * NEWMAT11: a matrix manipulation library. * See http://www.robertnz.net.

J. E. Dennis, Jr. and R. B. Schnabel, * Numerical Methods for Unconstrained Optimization and Nonlinear Equations,* Prentice-Hall Inc., New Jersey, 1983.

J. E. Dennis, Jr. and V. Torczon, Direct Search Methods on Parallel Machines, *SIAM J. Optimization,* Vol. 1, No. 4, pp. 448--474, November 1991.

J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of Level 3 Basic Linear Algebra Subprograms, *ACM Trans. Math. Software,* Vol. 16, pp. 18--28, 1990.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, An extended set of FORTRAN Basic Linear Algebra Subprograms, * ACM Trans. Math. Software,* Vol. 14, pp. 1--17, 1988.

A. S. El-Bakry, R. A. Tapia, T. Tsuchiya and Y. Zhang, On the Formulation and Theory of the Newton Interior-Point Method for Nonlinear Programming, * Journal of Optimization Theory and Applications,* Vol. 89, pp. 507--541, 1996.

A. S. El-Bakry, R. A. Tapia, and Y. Zhang, A Study of Indicators for Identifying Zero Variables in Interior-Point Methods, * SIAM Review, * Vol. 36, No. 1, pp. 45--72, 1994.

F. Facchinei, A. Fischer, and C. Kanzow, On the Accurate Identification of Active Constraints, * SIAM J. Optimization, * Vol. 9, No. 1, pp. 14--32, 1998.

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, *User's Guide for NPSOL(Version 4.0): A Fortran Package for Nonlinear Programming,* Technical Report SOL-86-2, System Optimization Laboratory, Stanford University, Stanford, CA, 1986.

P. E. Gill, W. Murray, and M. H. Wright, * Practical Optimization *, Academic Press, London, 1981.

M. J. Goldsmith, *Sequential Quadratic Programming Methods Based on Indefinite Hessian Approximations, * Ph.D. Thesis, Department of Operations Research, Stanford University, Palo Alto, CA, March 1999.

W. Hock and K. Schittkowski, * Test examples for nonlinear programming code,* Springer Verlag, New York, 1981.

P. D. Hough and J. C. Meza, A Class of Trust-Region Methods for Parallel Optimization, *SIAM J. Optimization,* Vol. 13, No. 1, pp. 264--282, 2002.

V. E. Howle, S. M. Shontz, and P. D. Hough, *Some Parallel Extensions to Optimization Methods in OPT++ *, Sandia Technical Report SAND2000-8877, Sandia National Laboratories, Livermore, CA, October 2000.

C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, Basic Linear Algebra Subprograms for FORTRAN usage, *ACM Trans. Math. Software, * Vol. 5 pp. 308--329, 1979.

D. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, *Mathematical Programming B,* Vol. 45, pp. 503-528, 1989.

J. C. Meza, *OPT++: An Object-Oriented Class Library for Nonlinear Optimization,* Sandia Technical Report SAND94-8225, Sandia National Laboratories, Livermore, CA, March 1994.

J. More and D. Thuente, Line Search Algorithms with Guaranteed Sufficient Decrease, * ACM Transactions on Mathematical Software,* Vol. 20, No. 3, pp. 286--307, 1994.

W. Murray and M. H. Wright, Line search procedures for the logarithmic barrier function, *SIAM J. Optimization,* Vol. 4, No. 2, pp. 229--246, 1994.

P. S. Pacheco, * Parallel Programming with MPI,* Morgan Kaufmann Publishers, Inc., San Francisco, 1997.

R. A. Tapia, On the role of slack variables in quasi-Newton methods for constrained optimization, *Numerical Optimization of Dynamic Systems,* In L. C. W. Dixon and G.P. Szego, eds., North Holland, pp. 235--246, 1980.

R. J. Vanderbei and D. Shanno, An interior-point algorithm for nonconvex nonlinear programming, * Computational Optimization and Applications,* Vol. 13, pp. 231--259, 1999.

Previous Section: Frequently Asked Questions | Back to the Main Page