
MESQUITE

Mesh Quality Improvement Toolkit

User’s Guide

Patrick Knupp

The Sandia National Laboratories

Albuquerque NM USA

Lori Freitag-Diachin

Livermore National Laboratory

Livermore CA USA

Boyd Tidwell

Elemental Technologies Inc.

American Fork, UT USA

Last Updated: 01 May, 2012

Contents

1 Introduction to Mesquite 3

1.1 Overview of Mesh Quality . 3
1.2 How Mesh Quality Is Improved . 4
1.3 Mesquite Goals . 5
1.4 Mesquite Concepts . 6
1.5 How to use this User’s Manual . 7

2 Installing Mesquite 9

2.1 Requirements . 9
2.1.1 Downloading Mesquite . 9
2.1.2 Supported Platforms and Build Requirements . 9
2.1.3 Optional Libraries and Utilities . 9

2.2 Building Mesquite . 10
2.2.1 Compiling on Unix-like systems . 10
2.2.2 Options for Unix-like systems . 10
2.2.3 Compiling on Microsoft Windows (CMake build) 11
2.2.4 Linking Multiple Versions of Mesquite . 12

3 Examples 13

3.1 Short Tutorial . 13
3.1.1 Tutorial File Template . 13
3.1.2 Loading a Test Mesh . 14
3.1.3 Improving the Mesh with a Wrapper Class . 15
3.1.4 Improving the Mesh with the Low Level API . 16
3.1.5 Mesh Improvement Examples . 17
3.1.6 Regression Testing . 18

4 Getting Mesh Into Mesquite 19

4.1 The Mesquite::Mesh Interface . 19
4.2 Accessing Mesh In Arrays . 20
4.3 Reading Mesh From Files . 21
4.4 ITAPS iMesh Interface . 22

4.4.1 Introduction . 22
4.4.2 Overview . 22
4.4.3 Practical Details . 23
4.4.4 Volume Example . 24
4.4.5 Two-dimensional Example . 26

5 Constraining Mesh to a Geometric Domain 29

5.1 The ITAPS iGeom and iRel Interfaces . 30
5.2 Simple Geometric Domains . 30

1

6 Mesquite Wrapper Descriptions 31

6.1 Laplace-smoothing . 31
6.2 Shape-Improvement . 31
6.3 Untangler . 32
6.4 Minimum Edge-Length Improvement . 32
6.5 Improve the Shapes in a Size-adapted Mesh . 33
6.6 Improve Sliver Tets in a Viscous CFD Mesh . 33
6.7 Deforming Domain . 33

7 Optimization Strategies 35

7.1 The Generalized Optimization Loop . 35
7.2 Patches . 36
7.3 Global . 37
7.4 Nash Game . 37
7.5 Block Coordinate Descent . 38
7.6 Culling . 38
7.7 Jacobi . 39

8 Analyzing Optimizer Behavior 40

8.1 Assessing Quality . 40
8.1.1 Stopping Assessment . 40
8.1.2 Using the Quality Assessor . 40
8.1.3 Quality Assessor Code Example . 43
8.1.4 Common-scale Histograms . 43

8.2 Debug Output . 47
8.3 Plotting Convergence Behavior . 48
8.4 Viewing Meshes . 49
8.5 Exporting Mesh Quality . 50
8.6 Mesh Optimization Visualization . 53

9 Using Mesquite in Parallel 54

9.1 Introduction . 54
9.2 Distributed Mesh . 54
9.3 Input Data . 55

9.3.1 ParallelMesh Implementation Requirements . 56
9.4 ITAPS iMeshP Interface . 56
9.5 Examples . 56

9.5.1 Example: Parallel Laplacian Smooth . 56
9.5.2 Example: Using Mesquite::Mesquite::MsqIMeshP 58

10 User Support 62

10.1 Mailing Lists . 62
10.2 WWW Page . 62

A The Mesquite Team 63

B Acknowledgments 64

Chapter 1

Introduction to Mesquite

1.1 Overview of Mesh Quality

Mesh quality refers to geometric properties of a mesh such as local volume, smoothness, shape, and
orientation that, if not properly controlled, can adversely affect solution accuracy or computational ef-
ficiency of numerical simulations. In this section we give an overview of the role of mesh quality in the
context of computer simulations of physical phenomena.

Simulation of many phenomena in the physical world involves computing numerical solutions to par-
tial differential equations (PDE’s). Commonly used approaches to computing numerical solutions such
as finite volume and finite element methods require the use of approximations to the continuum opera-
tors in the PDE and a mesh or grid to subdivide the physical domain into small subregions. Together,
the approximations and the mesh define a discretization. The difference between the exact solution to
the PDE and the numerical solution is known as the discretization error. A convergent discretization
means that the discretization error will asymptotically approach zero as the characteristic mesh size “h”
approaches zero. Decreasing mesh size to reduce discretization error to nearly zero is often impractical in
realistic simulations due to limited computing resources. One way to increase the accuracy of simulations
with the same computer resources is to adapt the mesh to the domain and to the numerical solution.
In adaptive refinement, the local mesh volume (or size) is made smaller in locations where the local
discretization error is large and is made larger in locations where the error is small. In local h-refinement,
mesh volume is made smaller by locally subdividing the mesh. In r-refinement, mesh volume is made
smaller by moving mesh nodes closer together. Geometric adaptation can also be important in improving
simulation accuracy. In regions of high domain curvature one adapts the mesh to the domain geometry by
creating locally smaller mesh sizes. We see, then, that local mesh size (or volume) is a critical parameter
in determining the accuracy of a simulation.

Aside from local mesh size, several other geometric mesh properties can affect solution accuracy.
These include mesh smoothness, local mesh angles, aspect ratio, and orientation. For example, in some
discretization methods there will be a loss of accuracy if the mesh is not smooth. In other cases, aspect
ratios and orientation must be carefully adapted to the solution in order to maintain a certain level of
accuracy. Simulations using meshes or domains that evolve in time (such as in ALE simulations) usually
require that initially good geometric mesh properties be retained throughout the simulation time period.
It is thus often important to control other geometric mesh properties in addition to local mesh size within
an adaptive simulation.

In addition to solution accuracy, geometric mesh properties can also affect the amount of computer
time required to obtain the numerical solution. Simulation codes usually employ iterative solvers to solve
systems of equations and thus obtain numerical solutions to PDE’s. The rate at which these solvers
converge is determined by the spectral radius of a certain matrix. The spectral radius of the matrix is
affected by, among other things, geometric properties of the mesh. Poor mesh quality can thus adversely
impact solution efficiency.

3

Adaptive meshing techniques require an initial mesh to begin the adaptation procedure. Poor quality
of the initial mesh (relative to the adapted mesh) can be difficult to overcome or, at least, reduce the
efficiency of the adaptive procedure. For example, if the initial mesh contains locally inverted elements,
these can often be fixed before the adaptive procedure begins. As another example, if it is known à
priori that small angles will be needed on the boundary of the domain to obtain reasonable simulation
accuracy, one should try to first create the small angles in the initial mesh to improve the efficiency of
the subsequent adaptive meshing procedure.

Many simulations, particularly those in industry, are performed in a non-adaptive setting. That is
to say, an initial mesh is generated and used throughout the calculation. The mesh is not changed as
the solution is computed. Mesh quality remains important for such calculations. First, for complicated
geometric domains it is often difficult to obtain good initial mesh quality. This is particularly true for
non-simplicial meshes but can be true for simplicial meshes as well. A common requirement is that the
mesh be smooth. Many simulation codes will not run to completion if the initial mesh contains a local
volume which is negative. These must be eliminated before a simulation can begin. Analysts performing
non-adaptive calculations often have considerable experience in using a variety of meshes on their problem
and have a good à priori idea of what constitutes good mesh quality for a given problem. They thus
desire to control the usual geometric mesh properties of the non-adapted mesh carefully.

1.2 How Mesh Quality Is Improved

Mesh quality can and should be considered during many stages of the mesh generation process from de-
featuring CAD models to creation and adaptation of the mesh. Thus, for example, certain non-essential
features of a CAD model, if eliminated, would go a long way to improving the quality of the mesh,
depending upon the meshing scheme. Other critical meshing parameters which can affect mesh quality
include geometric domain partitions, interval size and count, interaction of meshes within large assemblies
of parts, biasing requirements, corner picking, etc. Choices made during the mesh generation phase of an
analysis may have a large impact on initial mesh quality. Mesh quality can thus be improved by changing
the way in which the domain is meshed.

Once the meshing stage is completed, one can improve mesh quality by techniques such as vertex
movement and local topology modification. In vertex movement schemes, one seeks to reposition existing
mesh vertices to achieve better quality. If vertex movement is undertaken within an adaptive setting, it
is commonly referred to as r-refinement. Classic examples of vertex movement methods include Laplace
smoothing [10] and Winslow smoothing [23]. It is helpful, in vertex movement schemes, to first be able
to measure mesh quality so that one can explain in what sense one has improved it. Given a metric to
measure mesh quality, one can formulate a numerical optimization problem which guides vertex move-
ment to find the optimal mesh and thus improve its quality. Numerical optimization methods recently
developed for unstructured meshes include [6, 13, 9, 8, 11, 12, 4].

A large number of mesh quality metrics have been devised to measure mesh quality. Many of these
metrics are independent of any solution properties and are thus not useful in adaptive meshing. However,
there are a number of weighted quality metrics which can be tied to the numerical solution via error
indicators or other information for adaptive meshing.

Another way to improve mesh quality is to use local topological modification methods in which mesh
vertices or elements are locally created and/or destroyed. These methods are very successful when applied
to simplicial meshes, often within an adaptive context. Local topology modification is less effective on
non-simplicial meshes.

Mesh quality improvement remains an important on-going research area. There remain, for example,
open questions with regard to metrics which can be used in adaptive settings, theoretical questions on
problem formulation, and how to obtain improved meshes quickly. An important subset of Mesquite
capabilities is based on a mathematical theory that we are developing which we call the Target-matrix

paradigm (TMP). The basic idea is similar to that from Harmonic mappings, as applied to mesh gener-
ation: use only a few very soundly formulated quality metrics and adapt the mesh to a wide variety of
specialized purposes via specification of the mapping on the target manifold. However, TMP is formu-
lated as a discrete optimization problem, which allows direct control over important properties such as
invertibility which must hold even if the asympototic limit is not reached. The mathematics behind the
Target-matrix paradigm can be found in [14, 21, 5, 15, 17, 16, 18].

Although mesh quality improvement algorithms have been widely implemented in both meshing and
applications codes, it has always been difficult to improve the quality of a mesh created in one software
package using an improvement algorithm which has been implemented in another. This difficulty and
others have inspired the creation of the Mesquite software library. This library is described in the next
section.

1.3 Mesquite Goals

Mesquite (Mesh Quality Improvement Toolkit) is designed to provide a stand-alone, portable, compre-
hensive suite of mesh quality improvement algorithms and components that can be used to construct
custom quality improvement algorithms. The design is flexible so that the algorithms can be applied
to many different mesh element types and orders and referenced to both isotropic and anisotropic ideal
elements. Mesquite provides a robust and effective mesh improvement toolkit that allows both meshing
researchers application scientists to benefit from the latest developments in mesh quality control and
improvement.

Mesquite design goals are derived from a mathematical framework and are focused on providing a
versatile, comprehensive, inter-operable, robust, and efficient library of mesh quality improvement algo-
rithms that can be used by the non-expert and extended and customized by experts. In this section we
highlight the current status of Mesquite in several of our design goal areas.

Versatile. Mesquite works on structured, unstructured, and hybrid meshes in both two and three
dimensions. The design permits improvements to meshes composed of triangular, tetrahedral, quadri-
lateral, hexahedral, prismatic (wedge) and pyramidal elements. Support for general polyhedral elements
may be added at a future time. It currently incorporates only methods for node movement; plans for
topology modification and hybrid improvement strategies lie in the future. Node movement strategies in-
clude both local patch-based iteration schemes for one or a few free vertices and global objective functions
which improve all vertices simultaneously. Mesquite will be applicable to both adaptive and nonadaptive
meshing and to both low- and high-order discretization schemes, but currently works with non-adaptive
meshes containing linear elements.

Comprehensive. Mesquite will address a large variety of mesh quality improvement goals including
mesh volume control (sizing, invertibility), mesh angles, aspect ratios, and orientation. Specific goals
include mesh untangling, mesh smoothing, shape improvement, anisotropic smoothing, mesh rezoning for
ALE, mesh alignment, and deforming mesh algorithms. These goals can be pursued in both adaptive and
non-adaptive settings. The software is customizable, enabling users to insert their own quality metrics,
objective functions, and algorithms and also provides mechanisms for creating combined approaches that
use one or more improvement algorithms.

Inter-operable. To ensure that Mesquite is inter-operable with a large number of mesh generation
packages, Mesquite defines a generic interface for accessing application mesh and domain data. Addi-
toinally, Mesquite provides an adapter to interface with the common interfaces for mesh and geometry
query currently under developed by the ITAPS center. These interfaces provide uniform access to mesh
geometry and topology and will be implemented by all ITAPS center software including several DOE-
supported mesh generation packages. We are working with the ITAPS interface design team to ensure
that Mesquite has efficient access to mesh and geometry information through strategies such as informa-
tion caching and agglomeration. We are also participating in the design of interfaces needed to support

topological changes generated by mesh swapping and flipping algorithms and to constrain vertices to the
surface of a geometrical model.

Efficient. The outer layers of Mesquite use object-oriented design in C++ while the inner kernels use
optimizable coding constructs such as arrays and inlined functions. To ensure efficient use of computation-
ally intensive optimization algorithms, we employ inexpensive smoothers, such as Laplacian smoothing,
as “preconditioners” for the more expensive optimization techniques. In addition, mesh culling algorithms
can be used to smooth only those areas of the mesh that require improvement. Considerable attention
has been devoted to understanding and implementing a variety of termination criteria that can be used
to control the computational cost of the optimization algorithms.

Robust. Sound software engineering principles and robust numerical algorithms are employed in
Mesquite. A comprehensive suite of test problems and a unit testing framework have been developed to
verify the correct execution of the code.

Mesquite is not intended to be a mesh generation tool. It can serve as a post-processor to a mesh
generation procedure, a mesh pre-processor to a non-adaptive simulation code, or as an algorithm for
in-core adaptive mesh quality improvement. As a software library, Mesquite is intended to be linked to
either a meshing code or to a simulation code.

1.4 Mesquite Concepts

Mesquite software design is based on a mathematical framework that improves mesh quality by solving
an optimization problem to guide the movement of mesh vertices. The user inputs a mesh or submesh
consisting of vertices, elements, and the relationships between them. The quality of each vertex or ele-
ment in the mesh is described by a local quality metric that is a function of a subset of the mesh vertices.
The global quality of the mesh is formed by taking the global norm or the average of the local mesh
qualities. The global quality is thus a function of the positions of all the mesh vertices. If this function
can be used in a well-posed minimization problem (e.g., it is bounded below and has one or more local
minimums), mesh vertices are moved by Mesquite toward the vertex positions of the optimal mesh, thus
improving the quality according to the criterion defined by the local quality metric. By changing the local
quality metric one can achieve a variety of mesh quality improvement goals such as mesh untangling,
shape improvement, and size adaptation.

Users of Mesquite should have in mind a goal or set of goals which define the quality of the mesh
which is to be improved. The goal determines which quality metric or metrics one will use in the op-
timization problem. Other user inputs will include an objective function template which describes the
norm or average they wish to use in defining the global mesh quality. For example, an L-infinity norm
will tend to improve the worst-case local quality while an L-2 norm will improve the RMS quality of
the global mesh. Once the global quality (objective function) is defined, the user can select a numerical
optimization scheme (solver) within Mesquite such as a steepest descent, conjugate gradient, or feasible
Newton method. A variety of termination criteria can be selected singly or in combination to tell the
solver when to halt. These are useful in controlling the trade-off between the accuracy of the minimization
procedure vs. how much CPU is consumed. There is also an important flag that determines whether
the optimization problem will be solved via a succession of optimizations on local patches followed by a
complete pass over the global mesh or if it will be solved using a global patch in which all mesh vertices
are moved simultaneously. Advantages and disadvantages of each of these approaches is currently under
study.

Sometimes hybrid mesh optimization schemes are useful, for example, in first untangling a mesh and
then improving the shape of its elements. For sequences of optimization problems Mesquite uses the
concept of an instruction queue. The queue determines the order in which the optimization problems are
solved, using the output from the previous optimization step as the input to the next optimization step.
The queue defines a master quality improver that defines the ultimate mesh quality improvement goal.

The queue can also be used to include steps to assess mesh quality say before and after each optimization
step within the queue. The quality assessor measures various aspects of quality in the mesh and may
include other quality metrics besides the one used to define the optimization problem.

Optimization problems can be solved directly by minimizing the objective function or indirectly by
positioning mesh vertices at a stationary point of the global objective function. Stationary points are
defined by setting the gradient of the objective function to zero. The indirect method is akin to iteratively
solving a system of linear (or nonlinear) equations. Currently, such systems are solved in Mesquite and
other mesh quality software by using the local patch method that is akin to a Gauss-Seidel iteration.
The prime example of this in Mesquite is Laplace smoothing. In the future we may include methods
for solving global systems of equations in Mesquite to obtain solutions more quickly. In the past, some
mesh smoothing algorithms have been formulated as a local iterative method that cannot be derived by
setting the gradient of an objective function to zero. Such methods are frowned upon in Mesquite since
one cannot state what mesh quality metric is improved. However, if such methods are included in future
versions of Mesquite, they will be done in a manner similar to the local Laplace smoothing algorithm in
Mesquite.

APPLICATION
OBJECTIVE

DEFINES MESH QUALITY
GOAL

TARGET
FORMULATION OF
NUMERICAL OPTIMIZATION
PROBLEM

SPECIFIC
QUALITY
METRIC

SPECIFIC
OBJECTIVE
FUNCTION
TEMPLATE

MESH OR
SUBMESH
TO OPTIMIZE

F1 F2 F3 ETC

 GLOBAL PATCH

M1 M2 M3 ETC

SPECIFIC ALGORITHM

 SELECT SOLVER

 TERMINATION
 CRITERION

OPTIMIZE
MESH!

Figure 1.1: The Mesquite Paradigm

1.5 How to use this User’s Manual

This user’s manual

• provides an introduction to mesh quality and basic Mesquite concepts (Chapter 1),

• instructs novice users on how to download and install Mesquite (Chapter 2),

• provides a tutorial on Mesquite’s simplified user’s interface and Mesquite’s detailed API (Chapter
3).

• describes how to load a mesh in Mesquite via files (Chapter 4), and

• describes Mesquite interactions with domain geometry (Chapter 5), and

• describes Mesquite Wrappers (Chapter 6),

Consult the doxygen documentation for the API reference as well as details on the software. There
are two sets of doxygen documentations available:

• The developer doxygen doc is located in mesquite/doc/developer/. From that directory, you must
run ’doxygen Mesquite.dox’.

• The user doxygen doc (API doc) is located in mesquite/doc/user/doxygen. From that directory,
you must run ’doxygen Mesquite-user.dox’.

The doxygen command will generate two directories: an html directory containing the file index.html
that you can open with your web browser, and a latex directory containing a Makefile that will generate
a dvi file.

Chapter 2

Installing Mesquite

2.1 Requirements

2.1.1 Downloading Mesquite

The Mesquite distribution (in source form) may be obtained at the following URL:

http://www.cs.sandia.gov/∼web1400/1400 download.html

2.1.2 Supported Platforms and Build Requirements

The Mesquite source code will compile in any environment comforming to the ISO/IEC 9899-1999 (C99),
ISO/IEC 14882-1998 (C++98) and ISO/IEC 9945:2003 (POSIX) standards. It may also compile under
many other environments.

Mesquite requires a reasonably standards-conforming C++ compiler and corresponding libraries. No
additional libraries are required to build the core Mesquite library. Several optional features have addi-
tional requirements. These are listed in the next section.

Mesquite uses the GNU autotools build system. The Makefiles generated by the configure script
should work on any Unix-like platform using the build tools (e.g. make) provided with that platform.
The minimal requires beyond a C++ compiler are a Bourne shell (typically /bin/sh) implementation
and a minimal corresponding command environment and an implementation of the make utility.

Support for building Mesquite with Microsoft Visual Studio is no longer available as of Mesquite
version 2.0.

2.1.3 Optional Libraries and Utilities

• Unit tests: Mesquite provides a series of unit tests that may be used to verify the correct behavior
of a build of the Mesquite library. These tests are implemented using CppUnit framework. The
CppUnit framework must be installed to compile and run these test. It is available at this URL:

http://cppunit.sourceforge.net

• ExodusII support: To enable support for reading or writing ExodusII files in Mesquite, the header
files for the ExodusII library must be available. To link an application with a Mesquite library
supporting ExodusII, the ExodusII library and possibly the NetCDF library must be available. To
obtain the ExodusII library, contact:

Marilyn K. Smith

Research Programs Department

Department 9103, MS 0833

Sandia National Laboratories

P.O.Box 5800

9

http://www.cs.sandia.gov/~web1400/1400_download.html
http://cppunit.sourceforge.net

Albuquerque, NM 87185-0833

Phone: (505) 844-3082

FAX: (505) 844-8251

Email: mksmith@sandia.gov

The NetCDF library can be obained at the following URL:

http://www.unidata.ucar.edu/downloads/netcdf/index.jsp

2.2 Building Mesquite

After downloading and unpacking the Mesquite source, the next step is to configure and build and install
the Mesquite library.

2.2.1 Compiling on Unix-like systems

This section presents the steps required to compile Mesquite with the default options. It is typically
required that Mesquite be ”installed” before it is used in an application. The default installation location
is the system-wide /usr/local directory. It is more common to specify an alternate directory in which to
install the Mesquite library and headers. This can be done using the --prefix option to the configure

script. Additional options are available for fine-grained control of installation locations.

1. Change your working directory to the top-level Mesquite source directory (typically mesquite-<version>/).

2. Run the configure script with the command:

./configure --prefix=<installdir>,

replacing <installedir> with the location in which the finished Mesquite library is to be placed.

3. Compile Mesquite with the command: make

4. Optionally verify that Mesquite compiled correctly with the command: make check

5. Move resulting files into the destination (install) directory with the command: make install

If the configure step failed, please consult the following section describing some of the optional arguments
to the ./configure script.

2.2.2 Options for Unix-like systems

This section describes the options available for customizing the build system and the resulting Mesquite
library. An brief description of these and other options is available with the command: ./configure

--help.
The following values may be specified as environmental variables, as arguments to the configure script

using the NAME=VALUE syntax, or as arguments to make using the NAME=VALUE syntax. The value
of these variables (if set) during the configure step will become the default for the compile step. The
value of any of these variables will override the the default if specified during the compile step.

CXX The C++ compiler command

CXXFLAGS Arguments to the C++ compiler, such as those specifying debug symbols or the opti-
mization level.

CC The C compiler command

CFLAGS Command line arguments to be used for the C compiler.

DOXYGEN The doxygen API documentation generation tool.

http://www.unidata.ucar.edu/downloads/netcdf/index.jsp

Most options to the configure script are either of the form

--with-FEATURE[=ARG] or --enable-FEATURE[=ARG].

Some options may accept an additional argument following an ‘=’ character. For each –with-FEATURE
option, there is also a corresponding –without-FEATURE option. Similarly, there is a –disable-FEATURE
option corresponding to each –enable-FEATURE option. The negative forms fo the options (–without-
FEATURE and –disable-FEATURE) do not accept an additional argument. Only the positive form of
each option is stated in the description below.

The following general build and debug options may be specified during the configure step:

–enable-debug Select a subset of the following options that make the most sense for developers of
Mesquite.

–enable-release This is the default behavior unless –enable-debug is specified. It selects a subset of the
following options that typically work best for using Mesquite in a production application.

–enable-compile-optimized Compile with the available optimizations that improve performance with-
out any significant drawbacks (the -O2 compiler flag.)

–enable-debug-symbols Include debugging information in the compiled
Mesquite objects (the -g compiler flag).

–enable-debug-assertions Include internal consistancy checks that abort when an error is detected.

–enable-debug-output=n,m,... Enable the output of debug and status messages to file descriptor 1
(stdout). An list of integer debug flags for which to enable output may be specified as a comma-
separated list of values. The default is to enable debug flags 1 and 2 if this option is specified
without any explict debug flag values.

–enable-function-timers Enable time-profiling of some portions of Mesquite.

–enable-trap-fpe Enable generation of a floating-point exception signal for arithmatic errors (e.g. di-
vision by zero.) This is an option intended for Mesquite developers. Enabling this will typically
cause the application using Mesquite to abort when such an error is encountered.

–enable-namespace Specify an alternate namespace so as to avoid symbol conflicts between multiple
versions of Mesquite. See Section 2.2.4.

The following options specify optional Mesquite components and the location of the corresponding
dependencies.

–with-cppunit=DIR The CppUnit library is required to compile and run the tests to verify that a
particular build of the Mesquite library is working correctly. If the CppUnit library is not installed
in a default location where the ./configure script can find it, this option may be used to specify the
location.

–with-exodus=DIR Enable support for reading and writing ExodusII files, and optionally specify the
location where the ExodusII library and headers required for this option are installed.

–with-netcdf=DIR Specify the location of the NetCDF library required by the ExodusII library. The
default is to look in the ExodusII directory.

2.2.3 Compiling on Microsoft Windows (CMake build)

The Mesquite source includes the necessary input files to generate Microsoft Visual Studio project files
using the CMake utility. You will need to download and install the CMake utility for Windows if you
have not already done so. It is available at:

http://www.cmake.org/cmake/resources/software.html

http://www.cmake.org/cmake/resources/software.html

Using the graphical verison of the CMake utility, select the folder containing the Mesquite source and
enter a folder in which you would like the CMake output and compiled code to be stored. Select the
Configure button. You will be presented with a group of configuration options. Modify any desired
options and click the Configure button again. Each time you change one or more configuration options,
you must click the Configure button to update the list of available options. When you have finished
changing build options, click the Generate button to generate Visual Studio input files and exit the
CMake utility.

The build folder you specified in the CMake utility should now contain the necessary input files to
build Mesquite using Microsoft Visual C++.

2.2.4 Linking Multiple Versions of Mesquite

Sometimes it is necessary to have multiple different versions of a library such as Mesquite linked into
the same application. This situation typically arises when an application needs both Mesquite and some
other library that depends on an older version of Mesquite. Without taking steps to avoid symbol name
conflicts such a situation will often result in surprising, strange, and difficult to diagnose runtime errors.

Mesquite provides the ability to specify an alternate namespace and a standard namespace alias to
assist with addressing such situations. The “namespace” Mesquite is typcially an alias to the true internal
C++ namespace containing all Mesquite code. Applications can and should use that alias rather than
the internal namespace to avoid the need to modify application code whenever the internal namespace
changes.

The internal namespace can be changed with the configure option --enable-namespace=MyNS or the
cmake option Mesqutie NAMESPACE, where the value “MyNS” can be replaced with any string that is
an acceptable C++ namespace label. The default namespace is MesquiteN, with the Mesquite major
version subtitited for N. Specifying an alternate internal namespace results in different mangled symbol
names in the compiled library, thus avoiding symbol name conflicts.

If the requested namespace is anything other than “Mesquite”, then Mesquite will always provide
the alias namespace Mesquite = MESQUITE NS; so that application code may always use the Mesquite

namespace.

Chapter 3

Examples

3.1 Short Tutorial

In this section, we write a driver code which calls the Mesquite library to improve the quality of a test
mesh. This tutorial section is aimed at giving the user a feel for Mesquite: this section is not where to
look for detailed information. In particular, information pertaining to loading a particular mesh format
(see Chapter 4), interacting through a particular mesh interface (section 4.1), and details of defining
geometric domains (see Chapter 5) are not given in this section.

First, we write a small program using Mesquite’s simplified API, or wrappers, to show the fastest
way to deploy Mesquite functionality to improve a mesh. The wrapper concept, as well as details about
the different wrappers available, are described in section 3.1.3. Following this first example, we set up
customized mesh improvement tool using Mesquite’s low-level API, the details of which are described in
section 3.1.4.

3.1.1 Tutorial File Template

To create and link a driver code, the Mesquite library must be installed per the instructions of section 2.2.
The commands and file names specified in this section are relative to the installed testsuite/tutorial

directory. It is assumed that that is the working diretory. This tutorial begins with the file tutorial.cpp,
which contains the following template:

1. #include "Mesquite_all_headers.hpp"

#include <ostream>

2. using namespace Mesquite;

int main(int argc, char* argv[])

{

3. MsqError err;

if (argc != 2) {

std::cerr << "Expected mesh file names as single argument."

<< std::endl;

exit (EXIT_FAILURE);

}

// new code starts here

4. //...

return 0;

}

The lines labeled 1-3 highlight three basic aspects of using Mesquite;

1. For convenience, Mesquite provides the header file

13

include/Mesquite all headers.hpp

which includes all Mesquite headers. Although this is the easiest way to handle the include direc-
tives, it may slow down compilation of the application.

2. All Mesquite classes are part of the Mesquite namespace.

3. The MsqError class defines an object type used to communicate Mesquite errors to the application.
The calling application must pass an instance of the MsqError class or an instance of a subclass of
MsqError to many Mesquite functions. The state of the error object may be checked by casting the
instance ot a Boolean or using it in a Boolean context. The state is cleared by calling the clear

method.

4. In the sections that follow, we guide the user through the steps necessary to smooth a mesh using
Mesquite. All new lines of code to be added to the template file start in this position and are added
in the order in which they are discussed.

The code above takes a mesh file name as a command line argument and performs no action. We can
compile it in the (examples/) directory with the command:

make -f tutorial.make

3.1.2 Loading a Test Mesh

Our next step is to load one of the test meshes distributed with Mesquite. These meshes are distributed
in the VTK unstructured mesh format, the details of which are given in [22, 3]. This format was chosen
because of its readability and ease of use. In this tutorial we use the simplest mechanism for loadling a
mesh into Mesquite; different options are described in Chapter 4. In particular, to load a VTK test mesh
in Mesquite, instantiate the Mesquite mesh database object, MeshImpl, and use the read vtk member
function by adding the following lines to the file template described in 3.1.1.

Mesquite::MeshImpl my_mesh;

my_mesh.read_vtk(argv[1], err);

if (err)

{

std::cout << err << std::endl;

return 1;

}

If the mesh read in contains more than one type of element, Mesquite will automatically handle the
mixed elements with no additional effort required.

Mesquite also provides a function to write a mesh file in VTK format, given a MeshImpl object:

my_mesh.write_vtk("original_mesh.vtk",err);

Mesquite deals automatically with all types of supported elements (triangles, quadrilaterals, tetra-
hedra, hexahedra, wedges, and pyramids), and also hybrid meshes consisting of mixed element types.
Some meshes require geometry information as well. When improving a surface mesh, Mesquite must be
provided information about surface(s) the mesh is constrained to lie on and the association between mesh
entities and entities of the geometric domain (surfaces, curves, etc.) Because Mesquite is inherently a 3D
code, all 2D meshes must specify some geometry constraints. The details for general geometric surfaces
are explained in Chapter 5. In this section, we show how to define the geometry of a 2D planar mesh,
specified by a point (x, y, z) and a normal. For example, the following defines an xy-plane shifted five
units in the z-direction:

Vector3D normal(0,0,1);

Vector3D point(0,0,5);

PlanarDomain my_mesh_plane(normal, point);

3.1.3 Improving the Mesh with a Wrapper Class

The simplest way to use a Mesquite mesh quality improvement procedure is to instantiate one of the
wrapper classes described in Chapter 6. Here, we will instantiate the ShapeImprovement wrapper and
use it to improve the Mesh we created earlier. Mesquite can optimize the mesh without further input
from the user by utilizing preset, default values. If some customization is desired, the wrapper classes also
allow users to set the most important parameters of the underlying algorithms and metrics (see Chapter
6 for details).

Mesquite::ShapeImprover mesh_quality_algorithm;

mesh_quality_algorithm.run_instructions(&my_mesh,

&my_mesh_plane, err);

//Should check the error object after the instruction is ran

// to see whether the instructions were all successful.

if (err)

{

std::cout << err << std::endl;

return 1;

}

Once the algorithm has been executed using the run instructions member function of the wrapper
class, the improved mesh can be written to a new file:

my_mesh.write_vtk("smoothed_mesh.vtk",err);

This completes the code necessary for the simple wrapper example. Once the code has successfully com-
piled by typing the make command given in section 3.1.1, run it from the tutorial directory mesquite/testSuite/tutorial/

with a mesh file name as a command line argument by typing

./tutorial ../../meshFiles/2D/VTK/square_quad_10_rand.vtk

The code creates the files original mesh.vtk and improved mesh.vtk in the current directory. These two
meshes, the original and the optimized, are shown in figure 3.1. The text output of the code, shown
below, reports the inverse mean ratio quality metric statistics for the mesh at three stages: the original
mesh, the mesh at an intermediate step of the optimization, and the final mesh. The optimized mesh
consists of square quadrilaterals which have an inverse mean ratio value of 1.0.

************** QualityAssessor Summary **************

There were no inverted elements detected.

No entities had undefined values for any computed metric.

metric minimum average rms maximum

Inverse Mean Ratio 1.01013 1.16655 1.1738 1.79134

************** QualityAssessor Summary **************

There were no inverted elements detected.

No entities had undefined values for any computed metric.

metric minimum average rms maximum

Inverse Mean Ratio 1.01013 1.16655 1.1738 1.79134

************** QualityAssessor Summary **************

There were no inverted elements detected.

No entities had undefined values for any computed metric.

metric minimum average rms maximum

Inverse Mean Ratio 1 1 1 1

Figure 3.1: square quad 10 rand.vtk mesh. The original mesh is on the left, the mesh smoothed with
ShapeImprover is shown on the right.

3.1.4 Improving the Mesh with the Low Level API

If the user requires in-depth control over the mesh quality improvement process, the use of lower-level
Mesquite classes provides an extensive amount of flexibility. In particular, the user can specify the quality
metric, objective function template, and optimization algorithm by instantiating particular instances of
each. For each, various options such as numerical or analytical gradient and Hessian evaluations or the
patch size can be selected. Furthermore, the user can fine tune the optimization algorithm performance
by creating and setting the parameters of the termination criteria.

Once these core objects have been created and customized, the user creates an instruction queue and
adds one or more quality improvers and quality assessors to it. The mesh optimization process is initiated
with the run instructions method on the instruction queue class.

In this section, we provide a simple example to highlight the main steps needed for this approach.
The code segment given below performs the same functionality as the wrapper class highlighted in the
previous section. The comment lines provide high level documentation; the details of each class and the
low-level API are not described here.

// creates a mean ratio quality metric ...

IdealWeightInverseMeanRatio inverse_mean_ratio(err);

// sets the objective function template

LPtoPTemplate obj_func(&inverse_mean_ratio, 2, err);

// creates the optimization procedures

TrustRegion t_region(&obj_func);

//performs optimization globally

t_region.use_global_patch();

// creates a termination criterion and

// add it to the optimization procedure

// outer loop: default behavior: 1 iteration

// inner loop: stop if gradient norm < eps

TerminationCriterion tc_inner;

tc_inner.add_absolute_gradient_L2_norm(1e-4);

t_region.set_inner_termination_criterion(&tc_inner);

// creates a quality assessor

QualityAssessor m_ratio_qa(&inverse_mean_ratio);

// creates an instruction queue

InstructionQueue queue;

queue.add_quality_assessor(&m_ratio_qa, err);

queue.set_master_quality_improver(&t_region, err);

queue.add_quality_assessor(&m_ratio_qa, err);

// do optimization of the mesh_set

queue.run_instructions(&my_mesh, &my_mesh_plane, err);

if (err) {

std::cout << err << std::endl;

return 2;

}

3.1.5 Mesh Improvement Examples

The left image in figure 3.2 shows a mesh that has been degraded by moving the disk from the right side
of the square to the left while keeping the mesh topology fixed. The mesh file
mesquite/meshFiles/2D/VTK/hole in square.vtk contains the information for this mesh. If you plan
to run this example, note that the normal direction that defines the geometry is now (0, 0,−1). This
change must be made in the tutorial example code as was done in section 3.1.2, or an error message will
be thrown.

Vector3D normal(0,0,-1);

Vector3D point(0,0,-5);

PlanarDomain my_mesh_plane(normal, point);

We can now improve the mesh with the wrapper mentioned in 3.1.3 or the detailed API mentioned
in 3.1.4. Because we changed the normal, the driver code must be recompiled; otherwise the code and
executable are as before. Once the code is recompiled, type

./tutorial ../../meshFiles/2D/VTK/hole_in_square.vtk

to improve this mesh. The smoothed mesh is shown in the right image of figure 3.2. The vertex locations
have been repositioned and significantly improve the quality of the mesh, as shown by the onscreen quality
assessor output:

************** QualityAssessor(free only) Summary **************

Evaluating quality for 140 elements.

This mesh had 140 quadrilateral elements.

There were no inverted elements detected.

No entities had undefined values for any computed metric.

metric minimum average rms maximum std.dev.

Inverse Mean Ratio 1.07588 85.8391 463.357 5037.46 455.336

************** QualityAssessor(free only) Summary **************

Evaluating quality for 140 elements.

This mesh had 140 quadrilateral elements.

There were no inverted elements detected.

No entities had undefined values for any computed metric.

metric minimum average rms maximum std.dev.

Inverse Mean Ratio 1.01896 1.83479 1.91775 3.36336 0.557969

Figure 3.2: hole in square.vtk mesh. The original mesh is on the left, the mesh smoothed with Mesquite
is shown on the right.

3.1.6 Regression Testing

Regression testing encompasses running unit tests as well as comparing results data against ”blessed”
or ”gold” data. An example of comparing results of a smoothed mesh against a gold version is in
mesquite/testSuite/parallel smooth laplace/par hex smooth laplace.cpp. This utilizes a func-
tion in MeshUtil, meshes are different, to compare two MeshImpl objects (within a specified numeri-
cal tolerance). It is recommended that both unit testing and gold-comparison testing be included in your
test code development.

Chapter 4

Getting Mesh Into Mesquite

The application must provide Mesquite with data on which to operate. The two fundamental classes of
information Mesquite requires are:

• Mesh vertex coordinates and element connectivity, and

• Constraints on vertex movement.

In this chapter we will assume that the only constraint available for vertex movement is to flag the vertices
as fixed. More advanced constraints such as vertices following geometric curves or surfaces are discussed
in the following chapter.

The mesh data expected as input to Mesquite is a set of vertices and elements. Each vertex has
associated with it a fixed flag, a “byte”, and x, y, and z coordinate values. The fixed flag is used as input
only. It indicates whether or not the corresponding vertex position should be fixed (i.e., coordinates not
allowed to change) during the optimization. The “byte” is one byte of Mesquite-specific working data
associated with each vertex (currently only used for vertex culling.) The coordinate values for each vertex
serve as both input and output: as input they are the initial positions of the vertices and as output they
are the optimized positions.

Each element of the input mesh has associated with it a type and a list of vertices. The type is one
of the values defined in Mesquite::EntityTopology (Mesquite.hpp). It species the topology (type of
shape) of the element. Currently supported element types are triangles, quadrilaterals, tetrahedra, hexa-
hedra, triangular wedges, and pyramids. The list of vertices (commonly referred to as the “connectivity”)
define the geometry (location and variation of shape) for the element. The vertices are expected to be in
a pre-defined order specific to the element topology. Mesquite uses the canonical ordering defined in the
ExodusII specification[19].

For some more advanced capabilities, Mesquite may require the ability to attach arbitrary pieces of
data (called “tags”) to mesh elements or vertices.

4.1 The Mesquite::Mesh Interface

The Mesquite::Mesh class (MeshInterface.hpp) defines the interface Mesquite uses to interact with
mesh data. In C++ this means that the class defines a variety of pure virtual (or abstract) functions
for accessing mesh data. An application may implement a subclass of Mesquite::Mesh, providing imple-
mentations of the virtual methods that allow Mesquite direct access to the applications in-memory mesh
representation.

The Mesquite::Mesh interface defines functions for operations such as:

• Get a list of all mesh vertices.

• Get a list of all mesh elements.

• Get a property of a vertex (coordinates, fixed flag, etc.)

• Set a property of a vertex (coordinates, “byte”, etc.)

19

• Get the type of an element

• Get the vertices in an element

It also defines other operations that are only used for certain optimization algorithms:

• Get the list of elements for which a specific vertex occurs in the connectivity list.

• Define a “tag” and use it to associate data with vertices or elements.

Mesh entities (vertices and elements) are referenced in the Mesquite::Mesh interface using ‘handles’.
There must be a unique handle space for all vertices, and a separate unique handle space for all elements.
That is, there must be a one-to-one mapping between handle values and vertices, and a one-to-one
mapping between handle values and elements. The storage type of the handles is specified by

Mesquite::Mesh::VertexHandle and Mesquite::Mesh::ElementHandle.

The handle types are of sufficient size to hold either a pointer or an index, allowing the underlying
implementation of the Mesquite::Mesh interface to be either pointer-based or index-based. All mesh
entities are referenced using handles. For example, the Mesquite::Mesh interface declares a method to
retrieve the list of all vertices as an array of handles and a method to update the coordinates of a vertex
where the vertex is specified as a handle.

It is recommended that the application invoke the Mesquite optimizer for subsets of the mesh rather
than the entire mesh whenever it makes sense to do so. For example, if a mesh of two geometric volumes
is to be optimized and all mesh vertices lying on geometric surfaces are constrained to be fixed (such
vertices will not be moved during the optimization) then optimizing each volume separately will produce
the same result as optimizing both together.

4.2 Accessing Mesh In Arrays

One common representation of mesh in applications is composed of simple coordinate and index arrays.
Mesquite provides the ArrayMesh implementation of the Mesquite::Mesh interface to allow Mesquite to
access such array-based mesh definitions directly. The mesh must be defined as follows:

• Vertex coordinates must be stored in an array of double-precision floating-point values. The coor-
dinate values must be interleaved, meaning that the x, y, and z coordinate values for a single vertex
are contiguous in memory.

• The mesh must be composed of a single element type.

• The element connectivity (vertices in each element) must be stored in an interleaved format as an
array of long integers. The vertices in each element are specified by an integer i, where the location
of the coordinates of the corresponding vertex is located at position 3*i in the vertex coordinates
array.

• The fixed/boundary state of the vertices must be stored in an array of integer values, where a value
of 1 indicates a fixed vertex and a value of 0 indicates a free vertex. The values in this array must
be in the same order as the corresponding vertex coordinates in the coordinate array.

The following is a simple example of using the ArrayMesh object to pass Mesquite a mesh containing
four quadrilateral elements.

/∗∗ de f i n e some mesh ∗∗/
/∗ v e r t e x coord ina t e s ∗/

double coords [] = { 0 , 0 , 0 ,
1 , 0 , 0 ,
2 , 0 , 0 ,
0 , 1 , 0 ,

. 5 , . 5 , 0 ,
2 , 1 , 0 ,

0 , 2 , 0 ,
1 , 2 , 0 ,
2 , 2 , 0 } ;

/∗ q u a d r i l a t e r a l e lement c onn e c t i v i t y (v e r t i c e s) ∗/
long quads [] = { 0 , 1 , 4 , 3 ,

1 , 2 , 5 , 4 ,
3 , 4 , 7 , 6 ,
4 , 5 , 8 , 7 } ;

/∗ a l l v e r t i c e s ex cep t the cen t e r one are f i x e d ∗/
int f i x ed [] = { 1 , 1 , 1 ,

1 , 0 , 1 ,
1 , 1 , 1 } ;

/∗∗ crea t e an ArrayMesh to pass the above mesh in to Mesquite ∗∗/

ArrayMesh mesh(
3 , /∗ 3D mesh (t hree coord va lu e s per v e r t e x) ∗/
9 , /∗ nine v e r t i c e s ∗/
coords , /∗ the v e r t e x coord ina t e s ∗/
f i x ed , /∗ the v e r t e x f i x e d f l a g s ∗/
4 , /∗ four e lements ∗/
QUADRILATERAL, /∗ e lements are q u a d r i l a t e r a l s ∗/
quads) ; /∗ element c onn e c t i v i t y ∗/

/∗∗ smooth the mesh ∗∗/

/∗ Need sur face to cons t ra in 2D elements to ∗/
PlanarDomain domain (PlanarDomain : :XY) ;

MsqError e r r ;
ShapeImprover shape wrapper ;
i f (e r r) {

s td : : cout << e r r << s td : : endl ;
e x i t (2) ;

}

shape wrapper . r u n i n s t r u c t i o n s (&mesh , &domain , e r r) ;
i f (e r r) {

s td : : cout << ”Error smoothing mesh : ” << s td : : endl
<< e r r << s td : : endl ;

}

/∗∗ Output the new l o ca t i on o f the cen t e r v e r t e x ∗∗/
s td : : cout << ”New ver tex l o c a t i o n : (”

<< coords [1 2] << ” , ”
<< coords [1 3] << ” , ”
<< coords [1 4] << ”) ” << s td : : endl ;

NOTE: When using the ArrayMesh interface, the application is responsible for managing the storage
of the mesh data. The ArrayMesh does NOT copy the input mesh.

4.3 Reading Mesh From Files

Mesquite provides a concrete implementation of the Mesquite::Mesh named Mesquite::MeshImpl. This
implementation is capable of reading mesh from VTK[22, 3] and optionally ExodusII files. See Sections

2.1.3 and 2.2 for more information regarding the optional support for ExodusII files.
The ‘fixed’ flag for vertices can be specified in VTK files by defining a SCALAR POINT DATA at-

tribute with values of 0 or 1, where 1 indicates that the corresponding vertex is fixed. The Mesquite::MeshImpl
class is capable of reading and storing tag data using VTK attributes and field data. The current im-
plementation writes version 3.0 of the VTK file format and is capable of reading any version of the file
format up to 3.0.

4.4 ITAPS iMesh Interface

4.4.1 Introduction

The ITAPS Working Group has defined a standard API for exchange of mesh data between applications.
The iMesh interface[20] defines a superset of the functionality required for the Mesquite::Mesh interface.
Mesquite can access mesh through an iMesh interface using the Mesquite::MsqIMesh class declared
in MsqIMesh.hpp. This class is an “adaptor”: it presents the iMesh interface as the Mesquite::Mesh

interface.
The primary advantage of this method of providing mesh data to mesquite is that it is designed for

interoperability. The same API can be used to provide other tools and services access to the mesh data.
And there are stand-alone mesh data base libraries that already implement this API such as MOAB[2]
and FMDB[1]. It is also possible to implement the iMesh interface in Fortran.

4.4.2 Overview

A Mesquite::MsqIMesh instance must be provided with at least two pieces of information: The iMesh Instance

handle and an iBase EntitySetHandle. The optional iBase TagHandle for the “fixed tag” must fre-
quently be provided as well. The iMesh Instance specifies the instance of the database containing the
mesh. The iBase EntitySetHandle handle specifies the subset of that mesh that is to be optimized by
Mesquite. If the entire mesh is to be optimized then the “root set” should be specified for this argument.
The quality of all elements in this set will be used to drive the mesh optimization. All vertices adjacent to
any elements in the set will be moved as a part of the optimization unless they are explicitly designated
as fixed. The “fixed tag” is used to indicate such vertices. Every vertex adjacent to the input elements
should be tagged with a single integer value of either zero or one for the “fixed tag”. A value of one
indicates that the vertex is fixed while a value of zero indicates that the vertex location is to be optimized
by Mesquite.

The boundary of the mesh must always be constrained in some way for the mesh optimization to
produce valid results. For a volume mesh this can be accomplished by either designating the vertices
on the mesh boundary as fixed or by specifying a geometric domain (e.g. surfaces, curves, etc) that the
boundary vertices are constrained to lie on. For a surface mesh some geometric domain must always be
specified (e.g. a surface) and it is still necessary to specify which vertices are fixed unless the geometric
domain also includes the bounding geometric curves constraining the movement of the boundary mesh
vertices1. Geometric domains are the topic of Chapter 5. Further discussion and examples in this section
will be limited to volume meshes and true 2D meshes, both with the boundary vertices designated as
fixed via the “fixed tag”.

Designating vertices as fixed is the responsibility of the application using Mesquite. This responsibility
is left to the application (as opposed to providing some utility in Mesquite to find the “skin” of a mesh)
for several reasons. An application can often obtain the set of vertices bounding a region of mesh directly
through data not available to Mesquite. For example if the application has a B-rep solid model for
which the mesh is a discretization then it typically can obtain the bounding vertices as the set of vertices
associated with the bounding geometric entities. Further, there exist cases where the fixed vertices are
more than just those on the topological boundary of the mesh. For example, consider the mesh of a conic
surface that includes a vertex at the apex of the cone. Such a vertex must be designated as fixed because
the lack of a valid surface normal at that point will interfere with the correct functioning of Mesquite.
Such a vertex cannot be reliably identified given only the mesh. However, identifying such vertices

1A surface mesh that forms a topological sphere has no boundary and therefore need not have vertices designated as

fixed or otherwise constrained as long as the entire geometric domain is continuous.

typically happens naturally when obtaining the set of fixed vertices from the association with bounding
geometric entities. Finally, the optimal implementation of a “skinning” operation depends greatly on
details of the mesh representation that Mesquite is not aware of and is not otherwise concerned with.

4.4.3 Practical Details

The Mesquite::MsqIMesh class caches data related to the input iBase EntitySetHandle upon construc-
tion. If the contents of the referenced entity set change, or the vertices associated with elements contained
in that set change, then the application should either re-create the Mesquite::MsqIMesh instance or no-
tify an existing instance of the change by calling the set active set member function. Similarly, while
the implementation does not at the time of this writing cache data related to the “fixed tag”, it may do
so in the future. For forward compatibility the application should consider calling the set fixed tag

method of Mesquite::MsqIMesh to notify the instance that the value of the tag may have changed for
some mesh vertices.

The current version of Mesquite uses the following functions from the iMesh interface:

• iMesh getRootSet

• iMesh getGeometricDimension

• iMesh getEntities

• iMesh getNumOfType

• iMesh isEntContained

• iMesh getEntArrTopo

• iMesh getEntArrAdj

• iMesh getVtxArrCoords

• iMesh setVtxCoord

• iMesh createTag

• iMesh destroyTag

• iMesh getTagName

• iMesh getTagSizeBytes

• iMesh getTagType

• iMesh getTagHandle

• iMesh getIntArrData

• iMesh getIntData

• iMesh getArrData

• iMesh setArrData

• iMesh setIntData

• iMesh setIntArrData

An implementation should provide complete implementations of all of these methods to guarantee
compatibility with all possible Mesquite algorithms.

4.4.4 Volume Example

The following example demonstrates the use of the ShapeImprover wrapper with an implementation of
the iMesh interface. It is assumed that the application has implemented the iMesh interface to provide
access to its own data or is using an existing implementation of the iMesh interface to store its mesh
data. The example illustrates the setup necessary to correctly pass a subset of a mesh to mesquite and
how to designate boundary verices as fixed using the “fixed tag”. The input to the example function is
the iMesh Instance handle and an iBase EntitySetHandle specifying both the elements for which to
improve the quality and the free vertices. The example code uses this application-supplied designation
of which vertices are fixed to initalize the “fixed tag”.

#include <MsqError . hpp>

#include <ShapeImprover . hpp>

#include <MsqIMesh . hpp>

#include <vector>

#include <iostream>

#include <iMesh . h>

using namespace Mesquite ;

/∗∗\ b r i e f Ca l l Mesquite ShapeImprovement wrapper f o r volume mesh
∗
∗ Smooth mesh accessed through ITAPS APIs us ing Mesquite
∗ ShapeImprover .
∗
∗\param mesh ins tance iMesh API in s t ance
∗\param mesh A se t de f ined in ’ mesh ins tance ’ t ha t con ta in s
∗ ∗ both ∗ the s e t o f e lements to smooth ∗and∗ the
∗ s e t o f i n t e r i o r v e r t i c e s t ha t are to be moved
∗ to improve the q u a l i t y o f the mesh . This s e t
∗ must ∗not ∗ contain v e r t i c e s on the boundary o f
∗ the volume mesh .
∗\ re turn mesquite e r ror code or imesh er ror code
∗ (0 f o r succes s in a l l cases .)
∗/

int shape improve volume (iMesh Instance mesh instance ,
iBase Ent i tySetHandle mesh)

{
MsqPrintError e r r (s td : : c e r r) ;
int i e r r ;
iBase Ent i tyHandle ∗ptr1 , ∗ptr2 ;
int ∗ptr3 , ∗ptr4 ;
int i5 , i6 , i7 , i8 , i9 , i10 , i 1 1 ;
const i n t elem dim = 3 ;
const i n t max vtx per e lem = 8 ;

// crea t e adapter (shou ld a l s o crea t e f i x e d tag)
MsqIMesh mesh adapter (mesh instance , mesh , elem dim , e r r) ;
i f (e r r) return e r r . e r r o r c ode () ;

// ge t tag f o r marking v e r t i c e s as f i x e d
// Note : we assume here t ha t the tag has a l r eady been crea t ed .

iBase TagHandle f i x e d t a g = 0 ;
iMesh getTagHandle (mesh instance ,

” f i x ed ” ,

&f i x ed ta g ,
&i e r r ,
s t r l e n (” f i x ed ”)) ;

i f (iBase SUCCESS != i e r r) return i e r r ;

// ge t a l l v e r t i c e s in mesh
int count , num vtx ;
iMesh getNumOfType(mesh instance , mesh , elem dim , &count , &i e r r) ;
i f (iBase SUCCESS != i e r r) return i e r r ;
s td : : vector<iBase EntityHandle> elems (count) , v e r t s (max vtx per e lem ∗ count) ;
s td : : vector<int> i n d i c e s (max vtx per e lem ∗ count) , o f f s e t s (count+1);
ptr1 = &elems [0] ;
ptr2 = &ve r t s [0] ;
ptr3 = &ind i c e s [0] ;
ptr4 = &o f f s e t s [0] ;
i 5 = elems . s i z e () ;
i 7 = ve r t s . s i z e () ;
i 8 = i nd i c e s . s i z e () ;
i 1 0 = o f f s e t s . s i z e () ;
iMesh getAdjEntIndices (mesh instance , mesh ,

elem dim , iMesh ALL TOPOLOGIES, iBase VERTEX ,
&ptr1 , &i5 , &i6 ,
&ptr2 , &i7 , &num vtx ,
&ptr3 , &i8 , &i9 ,
&ptr4 , &i10 , &i11 , &i e r r) ;

i f (iBase SUCCESS != i e r r) return i e r r ;
v e r t s . r e s i z e (num vtx) ;

// s e t f i x e d f l a g on a l l v e r t i c e s
s td : : vector<int> tag data (num vtx , 1) ;
iMesh setIntArrData (mesh instance , &ve r t s [0] , v e r t s . s i z e () ,

f i x ed ta g , &tag data [0] , tag data . s i z e () , &i e r r) ;
i f (iBase SUCCESS != i e r r) return i e r r ;

// c l e a r f i x e d f l a g f o r v e r t i c e s contained d i r e c t l y in s e t
iMesh getNumOfType(mesh instance , mesh , iBase VERTEX , &count , &i e r r) ;
i f (iBase SUCCESS != i e r r) return i e r r ;
v e r t s . r e s i z e (count) ;
ptr1 = &ve r t s [0] ;
i 5 = ve r t s . s i z e () ;
iMe sh g e tEn t i t i e s (mesh instance , mesh , iBase VERTEX , iMesh ALL TOPOLOGIES,

&ptr1 , &i5 , &i6 , &i e r r) ;
i f (iBase SUCCESS != i e r r) return i e r r ;
tag data . c l e a r () ;
tag data . r e s i z e (v e r t s . s i z e () , 0) ;
iMesh setIntArrData (mesh instance , &ve r t s [0] , v e r t s . s i z e () ,

f i x ed ta g , &tag data [0] , tag data . s i z e () , &i e r r) ;
i f (iBase SUCCESS != i e r r) return i e r r ;

// Fina l l y , smooth the mesh
ShapeImprover smoother ;
smoother . r u n i n s t r u c t i o n s (&mesh adapter , e r r) ;
i f (e r r) return e r r . e r r o r c ode () ;

return 0 ;

}

4.4.5 Two-dimensional Example

This section presents an example of how to use Mesquite to optimize a 2D mesh. It is a modification of
the example from the previous section with changes shown in blue. As Mesquite operates only on 3D
meshes (either volume or surface), a 2D mesh is optimized by treating it as a surface mesh constrained
to the XY plane.

#include <MsqError . hpp>

#include <ShapeImprover . hpp>

#include <MsqIMesh . hpp>

#inc lude <PlanarDomain . hpp>

#include <vector>

#include <iostream>

#include <iMesh . h>

using namespace Mesquite ;

/∗∗\ b r i e f Ca l l Mesquite ShapeImprovement wrapper f o r 2D mesh
∗
∗ Smooth mesh accessed through ITAPS APIs us ing Mesquite
∗ ShapeImprover .
∗
∗\param mesh ins tance iMesh API in s t ance
∗\param mesh A se t de f ined in ’ mesh ins tance ’ t ha t con ta in s
∗ ∗ both ∗ the s e t o f e lements to smooth ∗and∗ the
∗ s e t o f i n t e r i o r v e r t i c e s t ha t are to be moved
∗ to improve the q u a l i t y o f the mesh . This s e t
∗ must ∗not ∗ contain v e r t i c e s on the boundary o f
∗ the mesh .
∗\ re turn mesquite e r ror code or imesh er ror code
∗ (0 f o r succes s in a l l cases .)
∗/

int shape improve 2D (iMesh Instance mesh instance ,
iBase Ent i tySetHandle mesh)

{
MsqPrintError e r r (s td : : c e r r) ;
int i e r r ;
iBase Ent i tyHandle ∗ptr1 , ∗ptr2 ;
int ∗ptr3 , ∗ptr4 ;
int i5 , i6 , i7 , i8 , i9 , i10 , i 1 1 ;
const i n t elem dim = 2 ;
const i n t max ver tex per e lem = 4 ;

// crea t e adapter (shou ld a l s o crea t e f i x e d tag)
MsqIMesh mesh adapter (mesh instance , mesh , elem dim , e r r) ;
i f (e r r) return e r r . e r r o r c ode () ;

// ge t tag f o r marking v e r t i c e s as f i x e d
// Note : we assume here t ha t the tag has a l r eady been crea t ed .

iBase TagHandle f i x e d t a g = 0 ;
iMesh getTagHandle (mesh instance ,

” f i x ed ” ,

&f i x ed ta g ,
&i e r r ,
s t r l e n (” f i x ed ”)) ;

i f (iBase SUCCESS != i e r r) return i e r r ;

// ge t a l l v e r t i c e s in mesh
int count , num vtx ;
iMesh getNumOfType(mesh instance , mesh , elem dim , &count , &i e r r) ;
i f (iBase SUCCESS != i e r r) return i e r r ;
s td : : vector<iBase EntityHandle> elems (count) , v e r t s (max vtx per e lem ∗ count) ;
s td : : vector<int> i n d i c e s (max vtx per e lem ∗ count) , o f f s e t s (count+1);
ptr1 = &elems [0] ;
ptr2 = &ve r t s [0] ;
ptr3 = &ind i c e s [0] ;
ptr4 = &o f f s e t s [0] ;
i 5 = elems . s i z e () ;
i 7 = ve r t s . s i z e () ;
i 8 = i nd i c e s . s i z e () ;
i 1 0 = o f f s e t s . s i z e () ;
iMesh getAdjEntIndices (mesh instance , mesh ,

elem dim , iMesh ALL TOPOLOGIES, iBase VERTEX ,
&ptr1 , &i5 , &i6 ,
&ptr2 , &i7 , &num vtx ,
&ptr3 , &i8 , &i9 ,
&ptr4 , &i10 , &i11 , &i e r r) ;

i f (iBase SUCCESS != i e r r) return i e r r ;
v e r t s . r e s i z e (num vtx) ;

// s e t f i x e d f l a g on a l l v e r t i c e s
s td : : vector<int> tag data (num vtx , 1) ;
iMesh setIntArrData (mesh instance , &ve r t s [0] , v e r t s . s i z e () ,

f i x ed ta g , &tag data [0] , tag data . s i z e () , &i e r r) ;
i f (iBase SUCCESS != i e r r) return i e r r ;

// c l e a r f i x e d f l a g f o r v e r t i c e s contained d i r e c t l y in s e t
iMesh getNumOfType(mesh instance , mesh , iBase VERTEX , &count , &i e r r) ;
i f (iBase SUCCESS != i e r r) return i e r r ;
v e r t s . r e s i z e (count) ;
ptr1 = &ve r t s [0] ;
i 5 = ve r t s . s i z e () ;
iMe sh g e tEn t i t i e s (mesh instance , mesh , iBase VERTEX , iMesh ALL TOPOLOGIES,

&ptr1 , &i5 , &i6 , &i e r r) ;
i f (iBase SUCCESS != i e r r) return i e r r ;
tag data . c l e a r () ;
tag data . r e s i z e (v e r t s . s i z e () , 0) ;
iMesh setIntArrData (mesh instance , &ve r t s [0] , v e r t s . s i z e () ,

f i x ed ta g , &tag data [0] , tag data . s i z e () , &i e r r) ;
i f (iBase SUCCESS != i e r r) return i e r r ;

// Fina l l y , smooth the mesh
ShapeImprover smoother ;
PlanarDomain xyplane (PlanarDomain : :XY) ;
smoother . r u n i n s t r u c t i o n s (&mesh adapter , &xyplane , e r r) ;
i f (e r r) return e r r . e r r o r c ode () ;

return 0 ;
}

Chapter 5

Constraining Mesh to a Geometric
Domain

Vertex positions may be constrained to a geometric domain by providing Mesquite with an optional
instance of the Mesquite::MeshDomain interface. This interface provides two fundamental capabilities:
mesh-geometry classification, and interrogation of local geometric properties. The methods defined in the
Mesquite::MeshDomain interface combine both queries into single operation. Queries are passed a mesh
entity handle (see Section 4.1), and are expected to interrogate the geometric domain that the specified
mesh entity is classified to.

If Mesquite is used to optimize the mesh of a B-Rep solid model (the data model used by all modern
CAD systems), then the domain is composed of geometric vertices, curves, surfaces, and volumes. Curves
are bounded by end vertices, surfaces are bounded by loops (closed chains) of curves, and volumes are
bounded by groups of surfaces. Mesquite expects each surface element (triangle, quadrilateral, etc.) to
be associated with a 2D domain (surface). Vertices may be associated with a geometric entity that
either contains adjacent mesh elements or bounds the geometric entity containing the adjacent elements.
Mesquite does not use geometric volumes. A query for the closest location on the domain for a vertex or
element whose classification is a geometric volume should simply return the input position.

It is possible to define an optimization problem such that mesh classification data need not be provided
in a Mesquite::MeshDomain implementation. This is done by optimizing the mesh associated with each
simple geometric component of the domain separately, with the boundary vertices flagged as fixed. The
following pseudo-code illustrates such an approach for a B-Rep type geometric domain:

for each geometric vertex

mark associated vertex as fixed

end-for

for each curve

do any application-specific optimization of curve node placement

mark associated mesh vertices as fixed

end-for

for each surface

define Mesquite::MeshDomain for surface geometry

invoke Mesquite to optimize surface mesh

mark all associated mesh vertices as fixed

end-for

for each volume

invoke Mesquite to optimize volume mesh w/o Mesquite::MeshDomain

end-for

29

5.1 The ITAPS iGeom and iRel Interfaces

Mesquite can access mesh domain data through the iGeom and iRel interface defined by the ITAPS Work
Group. These interfaces provide APIs for accessing B-Rep geometric data and associating mesh with
geometry (classifiation), respectively. Mesquite provides the Mesquite::MsqIGeom class (MsqIGeom.hpp)
as an adaptor for interfacing with appications that present the iGeom and iRel interfaces. The use of
the iRel interface is optional. If all the mesh vertices are constrained to a single geometric surface, it
is sufficient to provide only an iGeom instance to Mesquite::MsqIGeom. If vertices are constrained to
different geometric entities, then the iRel interface must be provided to Mesquite::MsqIGeom so Mesquite
can determine which iMesh entity a given vertex is constrained to lie in.

5.2 Simple Geometric Domains

Mesquite provides several implementations of the Mesquite::MeshDomain interface for simple geometric
primitives. All MeshDomains in Mesquite are geometric surfaces upon which meshes consisting of triangles
and/or quadrilaterals can exist. Mesquite does not have any implementations of 3D geometric regions.
The domains available in Mesquite include:

• PlanarDomain: An unbounded planar surface.

• XYPlanarDomain: An unbounded planar surface that exists in the XY-plane.

• SphericalDomain: A closed spherical surface.

• CylinderDomain: An unbounded cylindrical surface.

• BoundedCylinderDomain: A bounded cylindrical surface.

• ConicDomain: An unbounded cone with a circular cross-section.

• XYRectangle: An bounded rectangular domain in the XY-Plane.

The PlanarDomain is often used to map R
2 optimization problems to R

3. The others are used
primarily for testing purposes.

Notes about Domains:

• The BoundedCylinderDomain provides some simplistic mesh-geometry classification capabilities.
The others do not provide any classification functionality. Creating a bounded Cylinder is a two-
step process. First, a cylinder is created via the constructor by specifying a radius, a vector defining
the direction of the axis, and a point through which the axis passes. Second, the bounding part
is specified by calling one of the two overloaded methods ”create curve()”. Both versions accept
a distance from the axis where the circular curve to act at the bounding box will be placed along
with vertices to be considered bound to the curve. The vertices are specified by either a list or a
mesh depending on which version of the method is used.

• The ConicDomain is not bounded at the apex. It extends infinitely in both directions.

• The XYPlanarDomain is the only MeshDomain type that can be used with FeasibleNewton opti-
mization. FeasibleNewton also operates on volume meshes.

• The XYRectangle domain is a simple 2D domain used for free-smooth testing. The specified
rectangle can be in the XY, YZ, or ZX plane. The constructor takes as input a point (x,y,z),
a height and width, and a plane. A cooresponding bounding box is then created in the specified
plane. The method ”setup(iMesquite::Mesh* mesh, Mesquite::MsqError& err)” can then be used
to determine if a particular mesh lies completely in the defined bounded rectangle. If any of the
vertices of the mesh lie outside the rectangle a non-zero err value will be returned.

Chapter 6

Mesquite Wrapper Descriptions

Applications which desire to access Mesquite capabilities without delving into the low-level API can
invoke wrappers to perform basic mesh quality improvement tasks that, except for a few user-defined in-
puts, are fully automatic. The wrappers target classic mesh optimization problems that occur repeatedly
across many applications. See section 3.1.3 for an example of how to invoke a wrapper. This chapter
provides a summary of the current Mesquite wrappers.

Note that the wrappers do not, by themselves, completely define the optimization problem. The user
still has to set the fixed/free flags, and the values of the termination criteria.

6.1 Laplace-smoothing

Name: LaplaceWrapper
Purpose: Produce a smooth mesh.
Notes: This is a local patch relaxation-solver. A ’smart’ Laplacian solver is also available in Mesquite,
but it is not used in this wrapper.
Limitations/assumptions: No invertibility guarantee.
Input Termination Criterion: Stop after 10 global iterations.

Under the Cover:
Hardwired Parameters: None
Mesh/Element Type: Any supported type.
Global/Local: Local Patch with Culling

6.2 Shape-Improvement

Name: ShapeImprover
Purpose: Make the shape of an element as close as possible to that of the ideal/regular element shape.
For example, make triangular and tetrahedral elements equilateral. The wrapper will use a non-barrier
metric until the mesh contains no inverted elements. If the initial mesh was not tangled this phase will
not modify the mesh. If no limit is imposed on CPU time or time remains a second phase using a barrier
metric will further optimize the mesh with the guarantee that no elements will become inverted.
Notes: Will return failure if mesh contains inverted elements after first phase.
Limitations/assumptions:
Input Termination Criterion: CPU time limit (not used if input value is non-positive) or fraction of mean
edge length (default is 0.005).

31

Under the Cover:
Metric: TMPQualityMetric(Shape/ShapeBarrier)
Objective Function: Algebraic mean of quality metric values
Mesh/Element Type: Any supported type.
Solver: Conjugate Gradient
Global/Local: Global

6.3 Untangler

Name: UntangleWrapper
Purpose: Untangle elements. Prioritizes untangling over element shape or other mesh quality measures.
Notes: A second optimization to improve element quality after untangling is often necessary.
Limitations/assumptions: There is no guarantee that the optimal mesh computed using this wrapper
will, in fact, be untangled.
Input Termination Criterion: CPU time limit (not used if input value is non-positive) or fraction of mean
edge length (default is 0.005). It also terminates if all elements are untangled, such that it should not
modify an input mesh with no inverted elements.

Under the Cover:
Metric: TUntangleBeta or TUntangleMu(TSizeNB1) or TUntangleMu(TShapeSizeNB1)
Objective Function: Algebraic mean of quality metric values
Mesh/Element Type: Any supported type.
Solver: Steepest Descent
Global/Local: Local with culling, optionally Jacobi

6.4 Minimum Edge-Length Improvement

Name: PaverMinEdgeLengthWrapper
Purpose: Make all the edges in the mesh of equal length while moving toward the ideal shape. Intended
for explicit PDE codes whose time-step limination is governed by the minimum edge-length in the mesh.
Notes: Based on Target-matrix paradigm.
Limitations/assumptions: Initial mesh must be non-inverted. User does not want to preserve or create
anisotropic elements.
Input Termination Criterion: maximum iterations (default=50), maximum absolute vertex movement

Under the Cover:
Hardwired Parameters: None
Metric: Target2DShapeSizeBarrier or Target3DShapeSizeBarrier
Tradeoff Coefficient: 1.0
Objective Function: Linear Average over the Sample Points
Mesh/Element Type: Any supported type.
Solver: Trust Region
Global/Local: Global

6.5 Improve the Shapes in a Size-adapted Mesh

Name: SizeAdaptShapeWrapper
Purpose: Make the shape of an element as close as possible to that of the ideal element shape, while
preserving, as much as possible, the size of each element in the mesh. To be used on isotropic initial
meshes that are already size-adapted.
Notes: Based on Target-matrix Paradigm.
Limitations/assumptions: Initial mesh must be non-inverted. User wants to preserve sizes of elements in
initial mesh and does not want to preserve or create anisotropic elements.
Input Termination Criterion: maximum iterations (default=50), maximum absolute vertex movement

Under the Cover:
Hardwired Parameters: None
Metric: Target2DShapeSizeBarrier or Target3DShapeSizeBarrier
Tradeoff Coefficient: 1.0
Objective Function: Linear Average over the Sample Points
Mesh/Element Type: Any supported type.
Solver: Trust Region
Global/Local: Global

6.6 Improve Sliver Tets in a Viscous CFD Mesh

Name: ViscousCFDTetShapeWrapper
Purpose: Improve the shape of sliver elements in the far-field of a CFD mesh while preserving an existing
layer of sliver elements in the boundary layer.
Notes: Based on Target-matrix paradigm.
Limitations/assumptions: Tetrahedral meshes only.
Input Termination Criterion: Iteration Count (default=50) or Maximum Absolution Vertex Movement

Under the Cover:
Hardwired Parameters: In tradeoff coefficient model.
Metric: Target2DShape+Target2DShapeSizeOrient (or 3D) (or Barrier)
Tradeoff Coefficient: Based on element dihedral angle
Objective Function: Linear average over Sample Points
Mesh/Element Type: Tetrahedra
Solver: Trust Region
Global/Local: Global

6.7 Deforming Domain

Name: DeformingDomainWrapper
Purpose: Use initial mesh on undeformed geometric domain to guide optimization of mesh moved to
deformed geometric domain.
Notes: Uses a non-barrier metric which means that the wrapper could potentially invert/tangle elements.
Limitations/assumptions: Application responsible for explicit handling of mesh on geometric curves and
points. Initial mesh before moving to deformed domain must be available.
Input Termination Criterion: CPU time limit (not used if input value is non-positive) or fraction of mean
edge length (default is 0.005).

Under the Cover:
Metric: TMPQualityMetric(TShapeNB1 or TShapeSizeNB1 or TShapeSizeOrientNB1)
Objective Function: Algebraic mean of quality metric values
Mesh/Element Type: Any supported type.
Solver: Steepest Descent
Global/Local: Local with culling

Chapter 7

Optimization Strategies

7.1 The Generalized Optimization Loop

In Mesquite a generalization of the optimization strategy is used to implement a wide variety of optimiza-
tion strategies. Before discussing the different types of optimization strategies that can be implemented
with Mesquite we will first need to discuss the generalized strategy.

The mesh can be decomposed into subsets called patches. The specifics of this mesh decomposition
are discussed in Section 7.2. The optimization is done by repeatedly iterating over the set of patches,
optimizing each separately.

Test Outer
Termination

Criteria

Get Next Patch

Test Inner
Termination

Criteria

Optimize Patch
[Any Criterion Met] [No Criterion Met]

[No More Patches] [Have Another Patch]

[Any Criterion Met] [No Criterion Met]

Outer Loop Inner Loop

Figure 7.1: Optimization Loop

Figure 7.1 depicts the generalization of optimization strategies in Mesquite. The generalized opti-
mization is composed of three loops shown as non-overlapping square cycles in the diagram. The test
to exit each loop is performed at the decision points (diamonds) in the diagram. The loops are logically
nested from left to right, such that the right most loop is performed within a single iteration of the loop
to the left of it. The inner- and outer-most loops terminate based on user-definable termination criterion.
The center loop is the iteration over the set of patches composing the mesh.

The inner-most loop (the right-most cycle in the diagram) represents the iterative optimization of the
mesh contained in a single patch. This optimization is done until the inner termination criterion is met.
Once the inner criterion is met the optimizer advances to the next patch and the inner loop is entered
again to optimize that patch. Once each patch has been optimized the outer termination criterion is
tested. If the criterion has not been met then the loop over the set of patches is repeated.

The set of outer termination criteria determine when the optimization of the entire mesh is complete.
The set of inner termination criteria determine when the optimization of a single patch is complete. Both
sets of criteria are tested before entering their respective loops. If a criterion is met before the loop starts
then no iterations of the corresponding loop will be performed.

35

The outer loop(s) are implemented in the VertexMover class. The inner loop is implemented in
subclasses. The LaplacianSmoother class in Mesquite provides a traditional Laplace smoother. For this
class the mesh is decomposed into patches that each contain a single free vertex and the adjacent elements,
one patch for each free vertex in the mesh. For Laplace smoothing the inner (per-vertex) optimization is
not iterative. The inner loop always has an implicit termination criterion of a single iteration. Any other
inner termination criterion will still be tested before performing the relaxation of the free vertex in the
patch such that if any such criterion is met no optimization of the vertex will be performed. However,
culling (Section 7.6 can have a similar effect while typically producing better results. Passes are made
over the entire mesh until one of the specified outer termination criterion is met.

7.2 Patches

Mesquite can operate on a decomposition of the mesh into subsets called patches. Each patch is optimized
individually. The overall mesh optimization is performed by repeatedly iterating over the set of patches.
Mesquite provides two build-in mesh decompositions1: element-on-vertex patches and a global patch.

Figure 7.2: Miscellaneous patch configurations.

The global patch is a “decomposition” where the entire mesh is contained in a single patch. This is
used in the global optimization strategy discussed in Section 7.3. Figure 7.2c illustrates the global patch.

The element-on-vertex decomposition subdivides the mesh into a single patch for each free vertex.
Each patch includes the layer of elements adjacent to the free vertex. A element-on-vertex patch is
illustrated in Figure 7.2b. This decomposition is typically used for all optimization strategies discussed
in this chapter except for global optimization. Any other decomposition except global may be used for
any of the optimization strategies. All of the discussed strategies other than global do not make sense
for a global patch.

Any patch decomposition can be used with Mesquite. While no other decomposition strategy is
provided with Mesquite, the any implementation of the PatchSet interface can be associated with any
quality improver that supports it (any subclass of PatchSetUser, currently all except LaplacianSmoother).
An implementation of that interface is expected to provide three things:

1. An enumeration of all the patches in the decomposition of the mesh

2. For each patch, the set of vertices to optimize

3. For each patch, the set of elements for which the quality is to be optimized (typically all elements
containing the vertices to be optimized.)

A normal decomposition will be done such that each free vertex in the mesh is optimized in exactly one
patch, but Mesquite does not enforce this. Having a free vertex be optimized in no patch will result
in that vertex effectively being fixed for the optimization. A decomposition that optimized the same
vertices in multiple patches is allowable, and should have no adverse side effects unless doing a Jacobi
optimization (Section 7.7).

The listing below shows how a custom implementation of the PatchSet interface can be used with the
SteepestDescent solver.

1Mesquite includes an additional decomposition of the mesh into single-element patches which is not suitable for use in

optimization. It is used internally for quality assessment and other purposes

MyMeshDecomposition my patch set ;
Steepes tDescent qua l i ty improve r (&ob j e c t i v e f u n c t i o n) ;
qua l i ty improve r . u s e pa t ch s e t (&my patch set) ;

In any of the examples later in this chapter that call use element on vertex patch(), that call may be
sustitued with a call to use patch set to use some decomposition other than single-vertex patches.

7.3 Global

For a global optimization an objective function that measues the quality of the mesh is minimized using
a numerical solver. The coordinates of all of the free vertices in the mesh are the free variables in
the optimization. This is the default mode of operation for most solver-based implementations of the
QualityImprover interface.

A global optimization is simplest form of the generalized optimization loop. In this mode the mesh is
“decomposed” into a single patch containing the entire mesh. The outer loops in Figure 7.1 are executed
only once. The entire optimization process happens in the inner loop. For global optimization the outer
termination criterion is the default of a single iteration. The inner termination criterion should be used to
terminate the optimization process. Setting some other outer termination criterion is not prohibited, but
will result in a much less efficient optimization process. There is no logical difference between inner and
outer termination criterion, but each iteration of the outer loop begins with a clean solver state which
will result in less efficient operation of the solver. Even steepest descent, the simplest solver, caculates a
initial step size based on the previous iteration of the inner loop.

The listing below shows how global optimization can be selected.

// Create g l o b a l optmizer in s t ance
Steepes tDescent improver (&ob j e c t i v e f u n c t i o n) ;
improver . u s e g l o ba l pa t ch () ;

// Set on ly inner termnat ion c r i t e r i o n f o r
// g l o b a l op t imiza t ion
Terminat ionCr i te r ion inne r ;
i nne r . add abso lute vertex movement (1e−3) ;
improver . s e t i n n e r t e r m i n a t i o n c r i t e r i o n (&inne r) ;

// Run opt imiza t ion
Ins truct ionQueue queue ;
queue . s e t ma s t e r qua l i t y impr ov e r (&improver , e r r) ;
queue . r u n i n s t r u c t i o n s (&mesh , e r r) ;

7.4 Nash Game

// Create Nash optmizer in s t ance
Steepes tDescent improver (&ob j e c t i v e f u n c t i o n) ;
improver . u s e e l ement on ve r t ex pa tch () ;

// Set inner and outer termnat ion c r i t e r i o n f o r
// non−g l o b a l patch
Terminat ionCr i te r ion inner , outer ;
outer . add abso lute vertex movement (1e−3) ;
i nne r . a d d i t e r a t i o n l i m i t (2) ;
improver . s e t o u t e r t e r m i n a t i o n c r i t e r i o n (&outer) ;
improver . s e t i n n e r t e r m i n a t i o n c r i t e r i o n (&inne r) ;

// Run opt imiza t ion
Ins truct ionQueue queue ;
queue . s e t ma s t e r qua l i t y impr ov e r (&improver , e r r) ;
queue . r u n i n s t r u c t i o n s (&mesh , e r r) ;

7.5 Block Coordinate Descent

// Create BCD optmizer in s t ance
Steepes tDescent improver (&ob j e c t i v e f u n c t i o n) ;
improver . u s e e l ement on ve r t ex pa tch () ;
improver . do b l o ck c o o r d i na t e d e s c en t op t im i z a t i o n () ;

// Set inner and outer termnat ion c r i t e r i o n f o r
// non−g l o b a l patch
Terminat ionCr i te r ion inner , outer ;
outer . add r e l a t i v e qua l i ty improvement (1e−2) ;
i nne r . a d d i t e r a t i o n l i m i t (2) ;
improver . s e t o u t e r t e r m i n a t i o n c r i t e r i o n (&outer) ;
improver . s e t i n n e r t e r m i n a t i o n c r i t e r i o n (&inne r) ;

// Run opt imiza t ion
Ins truct ionQueue queue ;
queue . s e t ma s t e r qua l i t y impr ov e r (&improver , e r r) ;
queue . r u n i n s t r u c t i o n s (&mesh , e r r) ;

7.6 Culling

// Create Nash optmizer wi th c u l l i n g
Steepes tDescent improver (&ob j e c t i v e f u n c t i o n) ;
improver . u s e e l ement on ve r t ex pa tch () ;

// The c u l l i n g c r i t e r i o n i s e f f e c t i v e l y an outer
// terminat ion c r i t e r i o n because op t imiza t ion w i l l
// always s t op when a l l patches are c u l l e d . We
// must e x p l i c i t l y pass an empty outer terminat ion
// c r i t e r i o n to r ep l a c e the d e f a u l t o f one i t e r a t i o n .
// Add i t iona l ou ter terminat ion c r i t e r i a may a l s o be
// s p e c i f e d .
Terminat ionCr i te r ion inner , outer ;
i nne r . cu l l on abso lu te ve r t ex movement (1e−3) ;
i nne r . a d d i t e r a t i o n l i m i t (2) ;
improver . s e t o u t e r t e r m i n a t i o n c r i t e r i o n (&outer) ;
improver . s e t i n n e r t e r m i n a t i o n c r i t e r i o n (&inne r) ;

// Run opt imiza t ion
Ins truct ionQueue queue ;
queue . s e t ma s t e r qua l i t y impr ov e r (&improver , e r r) ;
queue . r u n i n s t r u c t i o n s (&mesh , e r r) ;

7.7 Jacobi

// Create Jacob i optmizer in s t ance
Steepes tDescent improver (&ob j e c t i v e f u n c t i o n) ;
improver . u s e e l ement on ve r t ex pa tch () ;
improver . do j a c ob i op t im i z a t i o n () ;

// Set inner and outer termnat ion c r i t e r i o n f o r
// non−g l o b a l patch
Terminat ionCr i te r ion inner , outer ;
outer . add abso lute vertex movement (1e−3) ;
i nne r . a d d i t e r a t i o n l i m i t (2) ;
improver . s e t o u t e r t e r m i n a t i o n c r i t e r i o n (&outer) ;
improver . s e t i n n e r t e r m i n a t i o n c r i t e r i o n (&inne r) ;

// Run opt imiza t ion
Ins truct ionQueue queue ;
queue . s e t ma s t e r qua l i t y impr ov e r (&improver , e r r) ;
queue . r u n i n s t r u c t i o n s (&mesh , e r r) ;

Chapter 8

Analyzing Optimizer Behavior

This chapter provides a brief overview of some of the tools provided in Mesquite for assisting with the
analysis and visualization of the Mesquite optimization process. The tools discussed in this section can
be used to provide additional output. External tools such as Paraview, VisIt, or GNU Plot must be used
to visualize the data.

8.1 Assessing Quality

The QualityAssessor class provides a summary of the mesh quality. It can be used with Non Target-
paradigm metrics (QualityMetric classes) as well as Target-paradigm metrics (TMetric classes). For
simplicity, the following discussion refers to the QualityMetrics classes but the concepts apply to the
TMetric classes as well. The QualityAssessor class can be used in a direct fashion as shown in the example
below or via the InstructionQueue class as described in Section 3.1.4. An instance of the QualityMetric
class can be specified for the QualityAssessor instance at creation to be used to assess the mesh quality.
Additional QualityMetric instances can be created using the Assessor class and by adding them to the
QualityAssessor instance via the ”add quality assessment” method. If no QualityMetrics are specified,
the only assessment that will be performed is a simple count of inverted elements. One or more instances
of the QualityAssessor class may be inserted in the InstructionQueue at any point to print a summary
of the mesh quality at that time during the optimization.

8.1.1 Stopping Assessment

A stopping assessment can be specified for each QualityAssessor instance. The ”stopping assessment”
directs the assessment code calculate a value using the power mean data to use that value as the return
value for the loop over mesh call. If no power mean is specified for a QualityAssessor instance, a simple
average of all metric values calculated during the assessment is returnedo from loop over mesh. Only
one stopping assessment with its associated power mean can be specified for a particular QualityAssessor
instance. There are three different ways to specify a stopping assessment: when the QualityAssessor
instance is created using a constructor, when a quality assessment is added via the add quality assessment
() method, and directly with the set stopping assessment() method. Since only one stopping assessment
can be defined for a each instance of QualityAssessor, the last action that causes the stopping assessment
to be set will be the one used for the assessment no matter how many metrics have been included.

8.1.2 Using the Quality Assessor

The QualityAssessor class provides a number of constructors. Each allows the specification of a different
set parameters to control the quality assessment. The parameters are described below including default
values, if any. Note that all parameters are not used in each constructor.

Parameters used by QualityAssesor constructors:

metric: QualityMetric to register for use in assessing mesh quality. Will also be used in the setting of
the stopping assessment.

40

histogram intervals: If non-zero, a histogram of quality metric values composed of the specified number
of intervals will be generated. Default is zero.

power mean: If non-zero, in addition to the normal summary statistics for the quality metric, an
additional general power mean with the specified power will be calculated. Is used as the value set
for the stopping assessment. Default is zero.

free elements only: When this option is TRUE, summary statistics are only computed over the set of
elements which contain free vertices. If an element in the mesh does not contain a free vertex, its
quality is not included in the summary. If an element in the mesh does not contain a free vertex, its
quality cannot be improved by Mesquite. To compute the quality of all mesh elements, regardless
of whether Mesquite can improve them, set this option to FALSE. Default is TRUE.

metric value tag name: If a non-null value is specified, a tag with the specified name can be associated
with quality values for individual elements or vertices if metric is an element-based or vertex-based
metric. If metric is not element-based or vertex-based, this argument has no effect. The specified tag
can then be associated with quality values generated for a mesh. Element-based metrics can have
one tagged value per element quality value while vertex-based metrics can have one tagged value per
vertex quality value. Tagged quality values are created using the methods tag set element data()
and tag set vertex data() found in the MeshImpl class. The tagged values can be retrived using
the methods tag get element data() and tag get vertex() data from the same class. Tags cannot be
used with target metric classes. Default for metric value tag name is null value.

inverted element tag name: If a non-null value is specified, an integer tag with the specified name
will be used to store a value of 0 for normal elements and 1 for inverted elements. Default is null
value.

print summary to std out: If TRUE, summary of mesh quality will be written to std::out. If FALSE,
quality assessment will be available via the get results and get all results methods, but will not be
printed. Default is TRUE.

output stream IO: stream to which to write a summary of the mesh quality.

name: Name to include in output. Useful if several QualityAssessors are in use at the same time.

After the QualityAssessor instance is created, any of a number of methods can be used to set individual
characteristics of the QualityAssessor object.

Once setup for the QualityAssessor object is complete, the actual assessment is preformed by calling
”loop over mesh”. After it terminates, results can be obtained using various methods supplied by the
QualityAssessor class.

For each instance of the QualityAssessor, a summary of the results will be printed after the assessments
have been completed. Display of the summary can be turned off by calling disable printing results()
before the assessment is started. The summary will include data for each of the metric assessments run
by the Assessor. The printed data includes the metric name, the minimum and maximum values, the
average value, the rms (root mean square), and the standard deviation. If a power mean was specified
for the assessment, an additional column will display the resultant value under a header containing the
power mean value used in the calculation. All values in the QualityAssessor summary table are per
mesh element. Any requested histograms are then displayed. The number of values in the histogram
is dependant upon the type of metric performed. For element-based metrics, the histogram contains
one value per element. For vertex-based metrics, it will contain the number of target sample points per
element times the number of elements.

Below is an example of a summary and histogram for an eight element mesh for two different metrics,
one that included a power mean of 1.5.

************** QualityAssessor(free only) Summary **************

Evaluating quality for 8 elements.

This mesh had 8 quadrilateral elements.

There were no inverted elements detected.

No entities had undefined values for any computed metric.

metric minimum average 1.5-mean rms maximum std.dev.

Condition Number 1.05817 1.14257 1.1469 1.35948 0.0995044

TSquared 1.18 2.23 2.28262 2.33533 3.77 0.693433

TSquared histogram:

(1-1.3) |======================3

(1.3-1.6) |==============================4

(1.6-1.9) |==============================4

(1.9-2.2) |==9

(2.2-2.5) |===============2

(2.5-2.8) |==============================4

(2.8-3.1) |=======1

(3.1-3.4) |======================3

(3.4-3.7) |=======1

(3.7-4) |=======1

metric was evaluated 32 times.

8.1.3 Quality Assessor Code Example

A simple example using the QualityAssessor class:

MsqError e r r ;
MeshImpl meshToAssess ;
PlanarDomain myDomain ;
S e t t i n g s mySett ings ;

meshToAssess . c l e a r () ;

// read in mesh
const char∗ f i l ename = ”meshToAssess . vtk ” ;
meshToAssess . r ead vtk (f i l ename , e r r) ;

// crea t e metr ic in s t ance
ConditionNumberQualityMetric metr i c ;

// crea t e Qua l i t yAsse s sor in s t ance accep t ing d e f a u l t va lue s
Qua l i tyAs s e s sor qa (&metr ic) ;

// change some o f the d e f a u l t parameters
qa . mea sur e f r e e sample s on ly (fa l se) ;
qa . d i s a b l e p r i n t i n g r e s u l t s () ;

// run the Qua l i t yAsse s sor
qa . loop over mesh (&meshToAssess , &myDomain , &mySettings , e r r) ;

// ge t r e s u l t s
const Qua l i tyAs s e s sor : : Asses sor ∗ r e s u l t s = qa . g e t r e s u l t s (&metr ic) ;
int i n v a l i d e l emen t c oun t = r e su l t s −>g e t i nva l i d e l emen t c oun t () ;
i f (i nva l i d e l emen t c oun t != 0)

s td : : cout << ”Warning : ” << i n v a l i d e l emen t c oun t
<< ” i n v a l i d e lements found . ” << s td : : endl ;

8.1.4 Common-scale Histograms

When optimizating a mesh, it can be useful to display the quality before and after optimization. This is
done by adding a QualityAssessor instance to an InstructionQueue, adding a quality improver instance to
the InstructionQueue, and then adding the Quality Assessor instance to the InstructionQueue a second
time. This allows a comparison of the mesh quality before and after optimization. Example code for
doing this:

#include ”Mesquite . hpp”
#include ”MeshImpl . hpp”
#include ”MsqError . hpp”
#include ” Instruct ionQueue . hpp”
#include ” Terminat ionCr i te r ion . hpp”
#include ” Qua l i tyAs s e s sor . hpp”
#include ”ConditionNumberQualityMetric . hpp”
#include ”NonSmoothDescent . hpp”

#include ”MeshImpl . hpp”
using namespace Mesquite ;

int main ()
{

MsqPrintError e r r (s td : : cout) ;
Mesquite : : MeshImpl mesh ;

// read in mesh
const char ∗ f i l e name = ” t i r e . vtk ” ;\ begin { l s t l i s t i n g } [frame=s i n g l e]
mesh . r ead vtk (f i l e name , e r r) ;
i f (e r r) return 1 ;

// Create an i n t r u c t i o n queue
Ins truct ionQueue queue1 ;

// Create a cond i t ion number q u a l i t y metr ic
ConditionNumberQualityMetric cond no ;

// Create the NonSmooth S t e epe s t Descent procedures
NonSmoothDescent minmax method(&cond no) ;

// Set a terminat ion c r i t e r i o n
Terminat ionCr i te r ion tc2 ;
tc2 . a d d i t e r a t i o n l i m i t (1) ;
minmax method . s e t o u t e r t e r m i n a t i o n c r i t e r i o n(&tc2) ;

// Set up the q u a l i t y a s s e s s o r
Qua l i tyAs s e s sor q u a l i t y a s s e s s o r = Qua l i tyAs s e s sor(&cond no) ;

// a s s e s s the q u a l i t y o f the i n i t i a l mesh
queue1 . a dd qua l i t y a s s e s s o r(& qua l i t y a s s e s s o r , e r r) ;
i f (e r r) return 1 ;

// Set the max min method to be the master q u a l i t y improver
queue1 . s e t ma s t e r qua l i t y impr ov e r (&minmax method , e r r) ;
i f (e r r) return 1 ;

// a s s e s s the q u a l i t y o f the f i n a l mesh
queue1 . a dd qua l i t y a s s e s s o r(& qua l i t y a s s e s s o r , e r r) ;
i f (e r r) return 1 ;

// launches op t imiza t ion on mesh set1
queue1 . r u n i n s t r u c t i o n s (&mesh , e r r) ;
i f (e r r) return 1 ;

// wr i t e out the smoothed mesh
mesh . wr i t e v tk (”smoothed mesh . vtk ” , e r r) ;
i f (e r r) return 1 ;

return 0 ;
}

Creating Common-scale Histograms

Comparing before and after histograms can be difficult when there is a large difference in the resultant
quality value range. In such cases, the common-scale histogram feature can be used to display two
histograms with a common vertical interval scale and a common horizontal scale for the number of quality
values that fall into each interval. Unlike the above example that reused the same QualityAssessor instance

for the before and after histograms, the common-scale histograms require two separate QualityAssessor
instances. After both the before optimization and after optimization quality assessments have been
performed, the method ’scale histograms(QualityAssessor* optimal)’ can be called to create a pair of
common-scale histograms. The before assessment is known as the ’initial’, the after assessment is known
as the ’optimal’. The histogram interval for both the initial and optimal assessments must be the same
for scale histograms() to work correctly.

Below is a portion of the previous code modified to show how to create common-scale histograms.

// Set up the q u a l i t y a s s e s s o r
Qua l i tyAs s e s sor i n i t i a l q u a l i t y a s s e s s o r=Qua l i tyAs s e s sor(&cond no , 1 0) ;
Qua l i tyAs s e s sor o p t ima l q u a l i t y a s s e s s o r=Qua l i tyAs s e s sor(&c ond no , 1 0) ;

// a s s e s s the q u a l i t y o f the i n i t i a l mesh
queue1 . a dd qua l i t y a s s e s s o r(& i n i t i a l q u a l i t y a s s e s s o r , e r r) ;
i f (e r r) return 1 ;

// Set the max min method to be the master q u a l i t y improver
queue1 . s e t ma s t e r qua l i t y impr ov e r (&minmax method , e r r) ;
i f (e r r) return 1 ;

\end{verbatim}
// a s s e s s the q u a l i t y o f the f i n a l mesh

queue1 . a dd qua l i t y a s s e s s o r(&op t ima l qua l i t y a s s e s s o r , e r r) ;
i f (e r r) return 1 ;

// launches op t imiza t ion on mesh set1
queue1 . r un i n s t r u // Set up the q u a l i t y a s s e s s o r
Qua l i tyAs s e s sor i n i t i a l q u a l i t y a s s e s s o r=Qua l i tyAs s e s sor(&cond no , 1 0) ;
Qua l i tyAs s e s sor o p t ima l q u a l i t y a s s e s s o r=Qua l i tyAs s e s sor(&cond no , 1 0) ;

// a s s e s s the q u a l i t y o f the i n i t i a l mesh
queue1 . a dd qua l i t y a s s e s s o r(& i n i t i a l q u a l i t y a s s e s s o r , e r r) ;
i f (e r r) return 1 ;

// Set the max min method to be the master q u a l i t y improver
queue1 . s e t ma s t e r qua l i t y impr ov e r (&minmax method , e r r) ;
i f (e r r) return 1 ;

// a s s e s s the q u a l i t y o f the f i n a l mesh
queue1 . a dd qua l i t y a s s e s s o r(&op t ima l qua l i t y a s s e s s o r , e r r) ;
i f (e r r) return 1 ;

// launches op t imiza t ion on mesh set1
queue1 . r u n i n s t r u c t i o n s (&mesh , e r r) ;
i f (e r r) return 1 ;

// crea t e common−s c a l e his tograms
i n i t i a l q u a l i t y a s s e s s o r . s c a l e h i s t o g r ams(&op t ima l q u a l i t y a s s e s s o r) ;

c t i o n s (&mesh , e r r) ;
i f (e r r) return 1 ;

// crea t e common−s c a l e his tograms
i n i t i a l q u a l i t y a s s e s s o r . s c a l e h i s t o g r ams(&op t ima l q u a l i t y a s s e s s o r) ;

Common-scale Histograms output example

************** QualityAssessor(free only) Summary **************

Evaluating quality for 8 elements.

This mesh had 8 quadrilateral elements.

There were no inverted elements detected.

No entities had undefined values for any computed metric.

metric minimum average rms maximum std.dev.

Condition Number 1.05817 1.14257 1.1469 1.35948 0.0995044

TSquared 1.18 2.23 2.33533 3.77 0.693433

TSquared histogram:

(1-1.3) |====================3

(1.3-1.6) |===========================4

(1.6-1.9) |===========================4

(1.9-2.2) |===9

(2.2-2.5) |=============2

(2.5-2.8) |===========================4

(2.8-3.1) |======1

(3.1-3.4) |====================3

(3.4-3.7) |======1

(3.7-4) |======1

metric was evaluated 32 times.

************** QualityAssessor(free only) Summary **************

Evaluating quality for 8 elements.

This mesh had 8 quadrilateral elements.

There were no inverted elements detected.

No entities had undefined values for any computed metric.

metric minimum average rms maximum std.dev.

TSquared 1.99733 2 2 2.00266 0.00173023

TSquared histogram:

(1.997-1.9976) |==================2

(1.9976-1.9982) |===========================3

(1.9982-1.9988) |===6

(1.9988-1.9994) |===========================3

(1.9994-2) |====================================4

(2-2.0006) |0

(2.0006-2.0012) |===========================3

(2.0012-2.0018) |===6

(2.0018-2.0024) |===========================3

(2.0024-2.003) |==================2

metric was evaluated 32 times.

************** Common-scale Histograms **************

TSquared histogram (initial mesh):

(1-1.3) |=====3

(1.3-1.6) |=======4

(1.6-1.9) |=======4

(1.9-2.2) |================9

(2.2-2.5) |===2

(2.5-2.8) |=======4

(2.8-3.1) |=1

(3.1-3.4) |=====3

(3.4-3.7) |=1

(3.7-4) |=1

metric was evaluated 32 times.

TSquared histogram (optimal mesh):

(1-1.3) |0

(1.3-1.6) |0

(1.6-1.9) |0

(1.9-2.2) |==32

(2.2-2.5) |0

(2.5-2.8) |0

(2.8-3.1) |0

(3.1-3.4) |0

(3.4-3.7) |0

(3.7-4) |0

metric was evaluated 32 times.

8.2 Debug Output

Mesquite contains a mechanism to send status and debug messages to an output stream (e.g. stdout or
std::cout). On Unix-like systems that use a configure/make autotools system debug output is enabled
using the ”–enable-debug” option on the configure command. This option enables Mesquite’s debug
capabilities but does not enable any actual debug output messages. Output messages are controlled
by flags specified using the ”–enable-debug-output” option on the configure command. This two step
approach is used so that in release builds the debug output feature can be disabled so that turning on
debug flags in a released version has no effect.

Debug messages are grouped into logical categories identified by an integer number. For example,
debug flag 1 refers to warnings, debug flag 2 is used for status information about the outer optimization
loop, and debug flag 3 is used for status of the inner optimization loop. The command to turn on all
three flags would be: ”./configure –enable-debug-output=1,2,3”. When specifying debug flags using the
”–enable-debug-output”, the ”–enable-debug” flag is implied and need not be supplied. The CMake
utility can also be used to enable debug output by setting the ”Trillinos ENABLE DEBUG” option to
”ON”. As with the configure command, debug output is only enabled with no flags having been set.
CMake options do not support setting of the output message flags so, when configuring Mesquite with
CMake, these flags must be specified using the techniques described below.

Debug flags can be controlled through a variety of means. The --enable-debug-output configure option
can be specified with a comma-separated list of integer values to specify which debug groups should be en-
abled by default. An application may call the MsqDebug::enable(unsigned) and MsqDebug::disable(unsigned)
functions to enable or disable debug message groups. Debug message groups may also be controlled
with the environmental variables MESQUITE DEBUG and MESQUITE NO DEBUG. Each should have
a comma-separated list of integer values as its argument. The variables enable and disable, respectively,
the corresponding debug message groups.

Additional detail of the available configure command options can be found in Section 2.2.

8.3 Plotting Convergence Behavior

The Mesquite TerminationCriterion class can produce a simple table of tab-separated values for the
different Mesquite termination criterion. This file can be used to plot the behavior of the optimization
loop using GNU Plot, a spread sheet application, or any other suitable tool. The code listing below
illustrates how this feature is activated.

// Create g l o b a l op t imize r in s t ance
Steepes tDescent improver (&ob j e c t i v e f u n c t i o n) ;
improver . u s e g l o ba l pa t ch () ;

// Set on ly inner terminat ion c r i t e r i o n f o r
// g l o b a l op t imiza t ion
Terminat ionCr i te r ion inne r ;
i nne r . add abso lute vertex movement (1e−3) ;
i nne r . w r i t e i t e r a t i o n s (” p lo t . gpt ”) ;
improver . s e t i n n e r t e r m i n a t i o n c r i t e r i o n (&inne r) ;

// Run opt imiza t ion
Ins truct ionQueue queue ;
queue . s e t ma s t e r qua l i t y impr ov e r (&improver , e r r) ;
queue . r u n i n s t r u c t i o n s (&mesh , e r r) ;

For usable results the feature must be activated on the appropriate TerminationCriterion instance.
For a global optimization it should be enabled for the inner termination criterion. For other optimization
strategies (see Chapter 7) it should be enabled for the outer termination criterion.

The following is a sample output file:

#I t e r CPU ObjFunc GradL2 GradInf Movement Inver ted

0 0 1.47419 0 0 0 0

1 0 1.147 0 0 0.657155 0

2 0 1.04779 0 0 0.402173 0

3 0 1.00572 0 0 0.357444 0

4 0 1.00006 0 0 0.150652 0

5 0 1 0 0 0.0153396 0

6 0 1 0 0 0.00015034 0

7 0 1 0 0 6.40008 e−09 0

Notice that several of the columns contain only zeros. The column containing the iteration number
will always contain valid values. Other values will only be included if they are calculated during the
optimization loop. The objective function value will be included for any global optimization that uses
an explicit objective function (currently any optimizer other than LaplacianSmoother). In the example
source code above we are using the steepest descent solver with a global patch so the objective function
value is also included. The other values will only be present if they are calculated for the purpose of
checking termination criteria. In the example source code we specify a termination criterion based on
vertex movement, so the column labeled “movement” contains the maximum distance any vertex was
moved for the corresponding iteration.

Figures 8.1 shows the result of using the above data file with the following GNU Plot commands:

set xlabel ’iterations’

set ylabel ’objective function value’

set y2label ’maximum vertex movement’

set y2tics 0.1

plot ’plot.gpt’ using 1:3 with linespoints \

title ’objective function’, \

’plot.gpt’ using 1:6 axes x1y2 with \

linespoints title ’vertex movement’

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 0 1 2 3 4 5 6 7
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7
ob

je
ct

iv
e

fu
nc

tio
n

va
lu

e

m
ax

im
um

 v
er

te
x

m
ov

em
en

t

iterations

objective function
vertex movement

Figure 8.1: Convergence Plot

8.4 Viewing Meshes

VTK files read and written by the MeshImpl class are viewable in a plethora of visualization tools that
use the VTK visualization library.

The Mesquite::MeshWriter namespace contains functions to export mesh in a variety of formats for
visualization including:

• GNU Plot

• Visualization TookKit (VTK)

• Encapsulated PostScript (EPS)

• Scalable Vector Graphics (SVG)

• StereoLithography (STL)

The GNU plot format writes line data that can be used to plot a wireframe of the mesh (the mesh edges).
Both 2D and 3D meshes can be exported in this format. A mesh can be plotted as a 2D projection with
the GNU plot command:

plot ’filename’ with linespoints

or as a rotatable 3D plot with the command:

splot ’filename’ with linespoints

Figure 8.2 is the result of plotting the mesh contained in testSuite/higher order/homogeneousPart.vtk
with GNU plot.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12 14 16 18 20

’mesh.gpt’

Figure 8.2: GNU Plot of 2D Quadratic Triangles

Figure 8.3: Paraview plot of 2D Quadratic Triangles

As mentioned in the previous section, the VTK file format can be used with a variety of visualization
tools. Figure 8.3 shows a simple plot of the same mesh in the Paraview visualization tool.

Figure 8.4 shows the output of the encapsulated PostScript writer for the mesh. The EPS writer can
write only 2D projections of the mesh. The caller must specify a projection when calling MeshWriter::write eps.
The testSuite/higher order/homogeneousPart.vtk file contains quadratic triangle elements. Compare the
mesh edges on the mesh boundary in this plot with the output in Figures 8.2 and 8.3. The EPS writer
in Mesquite exports the quadratic edges as curves corresponding to the classic quadratic edge shape
function:

E(u) =
1

2
u(u − 1)V1 + (1 − u2)V2 +

1

2
u(u + 1)V3

The STL file format can be used to write only linear triangles. Higher-order triangular elements will
be written as linear triangles. An error will be returned if the mesh contains other element types.

8.5 Exporting Mesh Quality

The QualityAssessor class has the ability to store mesh quality values and other characteristics as tag data
on mesh elements. This data can be accessed directly by applications or written to a VTK file using the

Figure 8.4: Encapsulated PostScript of 2D Quadratic Triangles

MeshImpl class or the applications native mesh writer (if it is capable of writing tag data.) The example
code below was used to create the VTK file from which the Paraview plot in Figure 8.5 was generated.

Figure 8.5: Paraview Plot Coloring Elements by Quality Metric Value

MsqError e r r ;
MeshImpl mesh ;
mesh . r ead vtk (”homogeneousPart . vtk ” , e r r) ;

Idea lWeightInverseMeanRatio metr i c ;
Qua l i tyAs s es sor qa ;
qa . add qua l i ty a s s e s sment (&metr ic , 0 , 0 , 0 , ” InverseMeanRatio ”) ;

PlanarDomain plane (PlanarDomain : :XY) ;
Ins truct ionQueue queue ;
queue . a dd qua l i t y a s s e s s o r (&qa , e r r) ;
queue . r u n i n s t r u c t i o n s (&mesh , &plane , e r r) ;

mesh . wr i t e v tk (”meshqual . vtk ” , e r r) ;

Figure 8.6: Paraview Plot Showing Inverted Elements

Figure 8.6 is a Paraview plot showing the inverted elements in a quadratic tetrahedral mesh. The
mesh is plotted twice: once as a simple wireframe of the mesh boundary and a second time as solid
mesh with a threshold filter on the inverted flag exported by Mesquite. The listing below shows how the
QualityAssessor class can be instructed to flag inverted elements:

MsqError e r r ;
MeshImpl mesh ;
mesh . r ead vtk (” sphe r eCy l inde r 1194 inv . vtk ” , e r r) ;

Qua l i tyAs s es sor qa ;
qa . t a g i nv e r t ed e l emen t s (” Inver ted ”) ;

Ins truct ionQueue queue ;
queue . a dd qua l i t y a s s e s s o r (&qa , e r r) ;
queue . r u n i n s t r u c t i o n s (&mesh , &plane , e r r) ;

mesh . wr i t e v tk (”meshqual . vtk ” , e r r) ;

8.6 Mesh Optimization Visualization

The Mesquite TerminationCriterion class can write the complete mesh after each iteration as either VTK
or GNU Plot data suitable for viewing as an animation. Similar to requesting plot data as described in
Section 8.3, it is important to request this feature from the appropriate termination criterion instance. If
doing a global optimization, the feature should be activated for the inner termination criterion. Otherwise
the feature should almost always be activated for the outer termination criterion.

The command to request an animation of the mesh optimization in the VTK format is:

tc . wr i t e mesh s teps (”anim” , Terminat ionCr i te r ion : :VTK) ;

This will produce a sequence of files named “anim.1.vtk”, “anim.2.vtk”, etc. The files can be opened in
visualization tools such as Paraview as a single set and played back as an animation. If the optimization
calculates the gradient of the objective function, that data will also be included in the file as vector data
on each mesh vertex. The components of the vector on each vertex are the partial derivatives of the
objective function with respect to each coordinate value of the vertex. A Paraview “glyph” filter can be
used to display these vector values during the animation.

The command to request an animation of the mesh optimization in a format suitable for animating
in GNU plot is:

tc . wr i t e mesh s teps (”anim” , Terminat ionCr i te r ion : :GNUPLOT) ;

This will produce a sequence of files named “anim.1”, “anim.2”, etc. It will also export a file named
“anim” that contains the necessary GNU Plot commands to display the animation.

Chapter 9

Using Mesquite in Parallel

9.1 Introduction

Large meshes are often partitioned across many parallel processors either because they are too large to
fit into the memory of a single machine or in order to speed up the computation. Even if it would be
possible to assemble all partitions on a single processor, smooth the mesh, and repartition the result,
such an approach would be very I/O inefficient. Moreover, for larger meshes such an approach would
quickly run out of memory and fail. Therefore Mesquite supports smoothing meshes in parallel.

Mesquite currently does only synchronous Nash-game or local optimizations in parallel [7]. It does
not yet provide parallel solvers and therefore cannot do either block coordinate descent or truly global
optimizations in parallel (minimization of an explicit, global objective function.)

For algorithms such as Laplacian smoothing that are local optimizations, optimization in parallel is
essentially the same as in serial. For other optimizations that do a global minimization of an explicitly
defined objective function in serial (for example ShapeImprover), the parallel optimization will be a
Nash-game type optimization where the interior vertices (those not on the partition boundaries) will be
optimized as a group. Each vertex on the partition boundary will then be optimized individually. While
a global optimization in serial will typically have only one outer iteration, it is generally desirable to do
multiple outer iterations in parallel so the Nash-game type optimization can reach convergence. Mesquite
wrappers (see Chapter 6) that implement global optimizations in serial default to 10 outer iterations in
parallel.

9.2 Distributed Mesh

The input mesh for use in parallel quality improvement must be partitioned based on vertices. That
is, each vertex in the mesh must be assigned a single processor as its owner. For optimal performance,
vertices should be evenly distributed amongst available processors and the vertices assigned to the same
processor should compose a contiguously connected patch of mesh.

Each processor must also have access to all elements for which the position of its vertices influence
the quality. For almost all algorithms in Mesquite, this is the set of all elements that contain one of
the vertices. Further, each processor must also be able to access any additional vertices owned by other
processors that are necessary to define those elements. The instances of such vertices on processors that
do not own them are typically referred to as “ghosted” vertices. Elements for which copies exist on
multiple processors may sometimes also be referred to as “ghosted” or “ghost” elements.

Figure 9.1 shows a mesh partitioned amongst three processors. The vertices owned by the three
different processors are shown in three different colors: blue, red, and green. Elements are colored
according to the processors for which copies of that element must be available. A copy of an element
must be available on each processor owning at least one of the vertices of the element. Elements colored
blue, red, or green need be visible only on the processor owning vertices of the corresponding color. The
single grey element must have copies defined on all three processors because each of its vertices is owned
by a different processor. The remaining elements must be defined on at least two processors.

54

Figure 9.1: Sharing or ghosting of elements and vertices in a partitioned mesh.

For a copy of an element to be available on a processor, all of its vertices must also be available on that
processor. So for all elements for which copies exist on more than one processor, the vertices contained in
those elements must also exist as ghost vertices on at least one processor. That is, copies of such vertices
must exist on processors other than those that are responsible for optimizing the location of that vertex.
For example, copies of the yellow elements in Figure 9.1 exist on both the blue and the green processors.
All blue vertices in at least one yellow element must exist as ghost vertices on the green processor and
all green vertices in at least one yellow element exist as ghost copies on the blue processor. A copy of the
grey element must exist on every processor. Therefore each vertex in that element exist as ghost copies
on both of the other two processors that do not own it.

9.3 Input Data

Assuming the mesh exists in partitioned form the user has to provide Mesquite with three things:

• a processor ID of type int for every vertex that determines which processor owns a vertex and is
in charge for smoothing this vertex,

• a global ID of type size t for every vertex that (at least in combination with the processor ID) is
globally unique,

• all necessary ghost elements and ghost nodes along the partition boundary must be provided.

The following copies of elements and vertices must exist: Elements must exist on all processors that
own one or more of the vertices they reference. Vertices must exist on all processors that have some
element referencing them.

The Mesquite::ParallelMesh class (ParallelMeshInterface.hpp) inherits Mesquite::Mesh and
defines the interface Mesquite uses to interact with parallel mesh data. It contains the following additional
pure virtual (or abstract) functions:

• get processor ids for given vertices,

• get global ids for given vertices,

• set and get a pointer to a Mesquite::ParallelHelper object.

To allow Mesquite direct access to the way you store the parallel mesh data you must inherit
Mesquite::ParallelMesh and also implement your own get processor ID and get global ID functionality.
The Mesquite::ParallelHelper class takes care of all the underlying communication using MPI. You
will always use the Mesquite::ParallelHelperImpl implementation that we provide.

Alternatively you can turn any existing mesh of type Mesquite::Mesh into a parallel mesh of type

Mesquite::ParallelMesh by using the Mesquite::ParallelMeshImpl

implementation we provide. On creation it needs a pointer to an object of type Mesquite::Mesh and the
names of two tags. It is expected that every vertex is properly tagged with the processor ID tag being of
type INT and the global ID tag being of type HANDLE.

9.3.1 ParallelMesh Implementation Requirements

In addition to global and processor ID’s, a tag named LOCAL ID, with type INT, must be provided in
your ParallelMesh implementation. In summary, here are the tags and their types required by Parallel
Mesquite:

Concept name Typical/required code string Mesquite type
vertex processor owner id PROCESSOR ID (typical, implementation-dependent) INT
vertex global unique id GLOBAL ID (typical, implementation-dependent) HANDLE
vertex local id (internal use) LOCAL ID (required) INT

9.4 ITAPS iMeshP Interface

The MsqIMeshP class is an alternate implementation of the ParallelMesh interface that can be used
to provide Mesquite with callbacks to access mesh and related parallel properties. The ITAPS Work-
ing Group has defined a standard API for exchange of parallel mesh data between applications. The
Mesquite::MsqIMeshP class declared in MsqIMeshP.hpp is an “adaptor”: it presents the iMeshP inter-
face as the Mesquite::ParallelMesh interface.

This class will use the iMeshP API to query processor identifiers and global identifiers for mesh
vertices. However, the MPI-based communication routines implemented in ParallelHelperImpl are
used rather to communicate updated vertex locations between processors, rather than the mechanism
provided by the iMeshP implementation.

9.5 Examples

This section contains two different examples of simple stand-alone applications that demonstrate the use
of the LaplaceWrapper smoother in parallel. Both examples, in being stand-alone programs, load the
mesh from one or more files. When integrating Mesquite into an existing application where it is desired
that Mesquite access application mesh data in memory, the initial setup will be different. It will typically
involve either providing some application-specific implementation of the Mesh and possibly ParallelMesh

interfaces or instances of an appliction-specific iMeshP and iMesh implementation.

9.5.1 Example: Parallel Laplacian Smooth

This example uses the LaplaceWrapper wrapper in parallel using the built-in Mesh, ParallelMesh, and
ParallelHelperImpl implementations. For this example to work, the mesh must be partitioned such
that the mesh for each processor is saved in a separate file named part-%d.vtk, with the %d replaced
with the processor rank. Each VTK file must contain vertex attributes named GID and PID containing
the global ID and owning processor rank for each vertex. Further, as this example provides no geometric
domain definition, the vertices on the boundary of the mesh must be designated as “fixed” for the problem
setup to be valid.

/* Mesquite includes */

#include <Mesquite.hpp>

#include <MeshImpl.hpp>

#include <ParallelMeshImpl.hpp>

#include <ParallelHelper.hpp>

#include <MsqError.hpp>

#include <LaplaceWrapper.hpp>

/* other includes */

#include <mpi.h>

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

/* init MPI */

int rank, nprocs;

if (MPI_SUCCESS != MPI_Init(&argc, &argv)) {

cerr << "MPI_Init failed." << endl;

return 2;

}

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

/* create processor-specific file names */

ostringstream in_name, out_name;

in_name << "part-" << rank << ".vtk";

out_name << "part-" << rank << "-smoothed.vtk";

/* load different mesh files on each processor */

Mesquite::MsqError err;

Mesquite::MeshImpl mesh;

mesh.read_vtk(in_name.str().c_str(), err);

if (err) {cerr << err << endl; return 1;}

/* create parallel mesh instance, specifying tags

* containing parallel data */

Mesquite::ParallelMeshImpl parallel_mesh(&mesh, "GID", "PID");

Mesquite::ParallelHelperImpl helper;

helper.set_communicator(MPI_COMM_WORLD);

helper.set_parallel_mesh(¶llel_mesh);

parallel_mesh.set_parallel_helper(&helper);

/* do Laplacian smooth */

LaplaceWrapper optimizer;

optimizer.run_instructions(¶llel_mesh, err);

if (err) {cerr << err << endl; return 1; }

/* write mesh */

mesh.write_vtk(out_name.str().c_str(),err);

if (err) {cerr << err << endl; return 1;}

MPI_Finalize();

return 0;

}

Implementation of Example 9.5.1

In your Mesquite distribution, there is an implementation of the example code for Lapalace smoothing
in parallel, in the file mesquite/testSuite/parallel smooth laplace/par hex smooth laplace.cpp.
This code reads in a serial or parallel-split set of VTK files and smooths the mesh, then compares the
result to a ”gold” copy, which is useful for regression testing (see 3.1.6).

Parallel Regression Tests

In addition to the Laplace example, see
mesquite/testSuite/parallel untangle shape/par hex untangle shape.cpp

for example use of parallel mesh untangling and shape improvement, and the associated files:
meshFiles/2D,3D/VTK/par *

For example, an initial, tangled quadrilateral mesh is shown in 9.2 while the result of untangling and
smoothing is shown in 9.3. A similar example with hexahedra is shown in figures 9.4 and 9.5.

Figure 9.2: Initial, tangled quadrilateral mesh.

9.5.2 Example: Using Mesquite::Mesquite::MsqIMeshP

Similar to the example in Section 9.5.1, this example uses the LaplaceWrapper wrapper in parallel to
improve element shape. However, this example assumes that either the iMeshP implementation is parti-
tioning or that it is reading some pre-defined partitioned mesh and it relies on the iMeshP implementation
to create ghost elements, assign global vertex IDs, etc.

An implementation of the iMesh and iMeshP APIs must be provided for this example to work.
Mesquite can use these APIs, but does not provide them.

/* Mesquite includes */

#include <Mesquite.hpp>

#include <MsqIMeshP.hpp>

#include <ParallelMeshImpl.hpp>

#include <ParallelHelper.hpp>

#include <MsqError.hpp>

#include <LaplaceWrapper.hpp>

Figure 9.3: Untangled and smoothed quadrilateral mesh.

Figure 9.4: Initial, tangled hexahedra mesh.

Figure 9.5: Untangled and smoothed hexahedral mesh.

/* other includes */

#include <mpi.h>

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

const char input_file[] = "testmesh";

const char output_file[] = "smoothmesh";

/* init MPI */

int rank, nprocs;

if (MPI_SUCCESS != MPI_Init(&argc, &argv)) {

cerr << "MPI_Init failed." << endl;

return 2;

}

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

/* create a new instance of the iMesh database */

int ierr;

iMesh_Instance mesh;

iMesh_newMesh(NULL, &mesh, &ierr, 0);

if (iBase_SUCCESS != ierr) return ierr;

iBase_EntitySetHandle root_set;

iMesh_getRootSet(mesh, &root_set, &ierr);

if (iBase_SUCCESS != ierr) return ierr;

/* create a partition instance in which to read

the partitioned mesh */

iMeshP_PartitionHandle partition;

iMeshP_createPartitionAll(mesh, MPI_COMM_WORLD,

&partition, &err);

if (iBase_SUCCESS != ierr) return ierr;

/* load mesh */

iMeshP_loadAll(mesh, partition, root_set, input_file,

NULL, &err, strlen(input_file), 0);

if (iBase_SUCCESS != ierr) return ierr;

/* create 1 layer of ghost entities */

iMeshP_createGhostEntsAll(mesh, partition, 3, 1, 1, 0, &err);

if (iBase_SUCCESS != ierr) return ierr;

/* create MsqIMeshP instance */

Mesquite::MsqError err;

Mesquite::MsqIMeshP parallel_mesh(mesh, partition, root_set,

iBase_REGION, err);

if (err) {cerr << err << endl; return 1; }

/* do Laplacian smooth */

LaplaceWrapper optimizer;

optimizer.run_instructions(¶llel_mesh, err);

if (err) {cerr << err << endl; return 1; }

/* write mesh */

iMeshP_saveAll(mesh, partition, root_set, output_file,

NULL, &ierr, strlen(output_file), 0);

if (iBase_SUCCESS != ierr) return ierr;

/* cleanup */

iMeshP_destroyPartitionAll(mesh, partition, &ierr);

if (iBase_SUCCESS != ierr) return ierr;

iMesh_dtor(mesh, &ierr);

if (iBase_SUCCESS != ierr) return ierr;

MPI_Finalize();

return 0;

}

Chapter 10

User Support

10.1 Mailing Lists

An open mailing for discussion of Mesquite usage questions is available at mesquite@software.sandia.gov.
This list is open to all Mesquite users. Archived messages and subscription information are available on
the list web page:
http://software.sandia.gov/mailman/listinfo/mesquite.

10.2 WWW Page

The Mesquite WWW page is located at
http://www.cs.sandia.gov/optimization/knupp/Mesquite.html.

62

mailto:mesquite@software.sandia.gov
http://software.sandia.gov/mailman/listinfo/mesquite
http://www.cs.sandia.gov/optimization/knupp/Mesquite.html

Appendix A

The Mesquite Team

The Mesquite team is composed of members from Sandia National Laboratories (SNL), Lawrence Liver-
more National Laboratory (LLNL), and Elemental Technologies Inc. (ETI).

The current Mesquite developement team includes:

Lori Freitag-Diachin (Co-PI, LLNL),

Patrick Knupp (Co-PI, SNL), and

Boyd Tidwell (ETI)

Past developers and other significant contributors to the development of Mesquite include:

Michael Brewer (SNL),

Ulrich Hetmaniuk (SNL),

Jason Kraftcheck (UW).

Thomas Leurent (ANL),

Darryl Melander (SNL), and

Todd Munson (ANL).

Current Mesquite developers can be contacted via e-mail at either the (private) developers’ mailing list:
Mesquite-Developers@software.sandia.gov, or the (open) mailing list for all Mesquite users: Mesquite@software.sandia.gov.

63

mailto:mesquite-developers@software.sandia.gov
mailto:mesquite@software.sandia.gov

Appendix B

Acknowledgments

Mesquite is supported under the DOE SciDAC Interoperable Tools and Petascale Simulation (ITAPS)
project.

64

Bibliography

[1] FMDB: Flexible distributed mesh database. http://www.scorec.rpi.edu/FMDB/.

[2] MOAB: A mesh-oriented database. https://trac.mcs.anl.gov/projects/ITAPS/wiki/MOAB.

[3] The visualization toolkit. http://public.kitware.com/VTK/.

[4] H. Edelsbrunner and N. Shah. Incremental topological flipping works for regular triangulations. In
Proceedings of the 8th ACM Symposium on Computational Geometry, pages 43–52, 1992.

[5] Patrick Knupp Evan van der Zee. Convexity of mesquite optimization metrics using a target-matrix
paradigm. Technical Report SAND2006-4975J, Sandia National Laboratories, Albuquerque, NM,
2006.

[6] L. Freitag. Users manual for Opt-MS: Local methods for simplicial mesh smoothing and untangling.
Technical Report ANL/MCS-TM-239, Argonne National Laboratory, Chicago, IL, 1999.

[7] L. Freitag, M. T. Jones, and P. E. Plassmann. An efficient parallel algorithm for mesh smoothing. In
Proceedings of the Fourth International Meshing Roundtable, pages 47–58, Albuquerque, NM, 1995.
Sandia National Laboratories.

[8] L. Freitag, P. Knupp, T. Munson, and S. Shontz. A comparison of optimization software for mesh
shape-quality improvement problems. In Proceedings of the 11th International Meshing Roundtable,
pages 29–40, Ithaca, NY, 2002. Sandia National Laboratories.

[9] L. A. Freitag and P. M. Knupp. Tetrahedral element shape optimization via the Jacobian determinant
and condition number. In Proceedings of the 8th International Meshing Roundtable, pages 247–258,
Albuquerque, NM, 1999. Sandia National Laboratories.

[10] P. Hansbo. Generalized laplacian smoothing of unstructured grids. Comm. Num. Meth. Engr.,
11:455–464, 1995.

[11] Barry Joe. Three-dimensional triangulations from local transformations. SIAM Journal on Scientific
Computing, 10:718–741, 1989.

[12] Barry Joe. Construction of three-dimensional improved quality triangulations using local transfor-
mations. SIAM Journal on Scientific Computing, 16:1292–1307, 1995.

[13] P. Knupp. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and
associated quantities. part i - a framework for surface mesh optimization. Int’l. J. Numer. Meth.
Engr., 48(3):401–420, 2000.

[14] Patrick Knupp. Formulation of a target-matrix paradigm for mesh optimization. Technical Report
SAND2006-2730J, Sandia National Laboratories, Albuquerque, NM, 2006.

[15] Patrick Knupp. Analysis of 2d rotational-invariant non-barrier metrics in the target-matrix paradigm.
Technical Report SAND2008-8219P, Sandia National Laboratories, Albuquerque, NM, 2008.

[16] Patrick Knupp. Label-invariant mesh quality metrics. In Proceedings of the 18th International
Meshing Roundtable, pages 139–155, Salt Lake City, UT, 2009. Springer.

65

[17] Patrick Knupp. Measuring quality within mesh elements. Technical Report SAND2009-3081J, Sandia
National Laboratories, Albuquerque, NM, 2009.

[18] Patrick Knupp. Target-matrix construction algorithms. Technical Report SAND2009-7003P, Sandia
National Laboratories, Albuquerque, NM, 2009.

[19] Victor R. Yarberry Larry A. Schoof. Exodusii: A finite element data model. Technical Report
SAND92-2137, Sandia National Laboratories, Albuquerque, NM, 1994.

[20] et.al. Lori Freitag-Diachin. The itaps imesh interface: Version 0.7 draft. Technical report, Lawrence
Livermore National Laboratory, Livermore, CA, 2007.

[21] Patrick Knupp Ulrich Hetmaniuk. Local 2d metrics for mesh optimization in the target-matrix
paradigm. Technical Report SAND2006-7382J, Sandia National Laboratories, Albuquerque, NM,
2006.

[22] B. Lorensen W. Schroeder, K. Martin. The Visualization Toolkit An Object-Oriented Approach To
3D Graphics 3rd Edition. Kitware, Inc., 2003.

[23] A. Winslow. Numerical solution of the quasilinear poisson equations in a nonuniform triangle mesh.
J. Comp. Phys., 2:149–172, 1967.

	Introduction to Mesquite
	Overview of Mesh Quality
	How Mesh Quality Is Improved
	Mesquite Goals
	Mesquite Concepts
	How to use this User's Manual

	Installing Mesquite
	Requirements
	Downloading Mesquite
	Supported Platforms and Build Requirements
	Optional Libraries and Utilities

	Building Mesquite
	Compiling on Unix-like systems
	Options for Unix-like systems
	Compiling on Microsoft Windows (CMake build)
	Linking Multiple Versions of Mesquite

	Examples
	Short Tutorial
	Tutorial File Template
	Loading a Test Mesh
	Improving the Mesh with a Wrapper Class
	Improving the Mesh with the Low Level API
	Mesh Improvement Examples
	Regression Testing

	Getting Mesh Into Mesquite
	The Mesquite::Mesh Interface
	Accessing Mesh In Arrays
	Reading Mesh From Files
	ITAPS iMesh Interface
	Introduction
	Overview
	Practical Details
	Volume Example
	Two-dimensional Example

	Constraining Mesh to a Geometric Domain
	The ITAPS iGeom and iRel Interfaces
	Simple Geometric Domains

	Mesquite Wrapper Descriptions
	Laplace-smoothing
	Shape-Improvement
	Untangler
	Minimum Edge-Length Improvement
	Improve the Shapes in a Size-adapted Mesh
	Improve Sliver Tets in a Viscous CFD Mesh
	Deforming Domain

	Optimization Strategies
	The Generalized Optimization Loop
	Patches
	Global
	Nash Game
	Block Coordinate Descent
	Culling
	Jacobi

	Analyzing Optimizer Behavior
	Assessing Quality
	Stopping Assessment
	Using the Quality Assessor
	Quality Assessor Code Example
	Common-scale Histograms

	Debug Output
	Plotting Convergence Behavior
	Viewing Meshes
	Exporting Mesh Quality
	Mesh Optimization Visualization

	Using Mesquite in Parallel
	Introduction
	Distributed Mesh
	Input Data
	ParallelMesh Implementation Requirements

	ITAPS iMeshP Interface
	Examples
	Example: Parallel Laplacian Smooth
	Example: Using Mesquite::Mesquite::MsqIMeshP

	User Support
	Mailing Lists
	WWW Page

	The Mesquite Team
	Acknowledgments

