LAMMPS/miniMD overview:

communication/computation performance

miniMD vs. LAMMPS

Similarities:

Underlying MD algorithms
— Velocity verlet integration
— Spatial decomposition
— Essentially identical results

“Look and feel”
— Input script
— Thermo output

Performance
— miniMD slightly faster
— Scaling

Differences:

3 vs 130 klocs

* No optional packages

 Few commands/options

* Easier to build

 More portable

* Easier to overhaul / try new ideas
* No long-range electrostatics

* Only one pair style: LJ

LAMMPS

(Large-scale Atomic/Molecular Massively Parallel Simulator)
http://lammps.sandia.gov

Classical MD code.

Open source, highly portable C++.

Freely available for download under GPL.
Easy to download, install, and run.

Well documented.

p

Easy to modify or extend with new features and functionality.
Active user’s e-mail list with over 300 subscribers.

Since Sept. 2004: over 20k downloads, grown from 53 to 125 kloc.

Spatial-decomposition of simulation domain for parallelism.
Energy minimization via conjugate-gradient relaxation.

Radiation damage and two temperature model (TTM) simulations.

Atomistic, mesoscale, and coarse-grain simulations.
Variety of potentials (including many-body and coarse-grain).

Variety of boundary conditions, constraints, etc.

LA A1 v

Parallel Efficiency (%)

100
90
80
70
60
50
40
30
20

—@-ASCI Red (175)
—®—Ross (58.6)
~@- Liberty (19)
~O~ Spirit (15.4)

Cheetah (40.1)
—8-HPCx (19.9)
=O-Blue Gene Light (63.6)
—O—Red Storm (18.2)

1 8 64 512 4096 16K 64K
Processors

Force fields available in LAMMPS

Biomolecules: CHARMM, AMBER, OPLS, COMPASS (class 2),
long-range Coulombics via PPPM, point dipoles, ...

Polymers: all-atom, united-atom, coarse-grain (bead-spring FENE), bond-breaking, ...

Materials: EAM and MEAM for metals, Buckingham, Morse, Yukawa,
Stillinger-Weber, Tersoff, AI-REBO, Reaxx FF, ...

Mesoscale: granular, DPD, Gay-Berne, colloidal, peri-dynamics, DSMC ...
Hybrid: can use combinations of potentials for hybrid systems:

water on metal, polymers/semiconductor interface,
colloids in solution, ...

Classical MD Basics

Each of N particles is a point mass
— atom rof
— group of atoms (united atom)
— macro- or meso- particle

Particles interact via empirical force laws

— all physics in energy potential = force sal \/—

— pair-wise forces (LJ, Coulombic) o o _
— many-body forces (EAM, Tersoff, REBO) =% Sl 59
— molecular forces (springs, torsions)
— long-range forces (Ewald)
Integrate Newton's equations of motion
— F=ma
— set of N, coupled ODEs
— advance as far in time as possible

Properties via time-averaging ensemble snapshots (vs MC sampling)

Energy (epsilon)

MD Timestep

e Velocity-Verlet formulation:
— update V by % step (using F)
— update X (using V)
— build neighbor lists (occasionally)
— compute F (using X)
— apply constraints & boundary conditions (on F)
— update V by % step (using new F)
— output and diagnostics

e CPU time break-down:
— forces = 80%
— neighbor lists = 15%
— everything else = 5%

Computational Issues

 These have a large impact on CPU cost of a simulation:

— Level of detail in model
— Cutoff in force field

— Long-range Coulombics
— Neighbor lists

— Newton's 3rd law (compute on ghost atoms, but more
communication)

— Timestep size (vanilla, SHAKE, rRESPA)
— Parallelism

Classical MD in Parallel

MD is inherently parallel
— forces on each atom can be computed simultaneously
— Xand V can be updated simultaneously

Most MD codes are parallel
— via distributed-memory message-passing paradigm (MPI)

Computation scales as N = number of atoms
— ideally would scale as N/P in parallel

Can distribute:
— atoms communication = scales as N
— forces communication = scales as N/sqrt(P)
— space communication = scales as N/P or (N/P)?/3

Parallelism via Spatial-Decomposition

* Physical domain divided into 3d boxes, one per processor
Each proc computes forces on atoms in its box
using info from nearby procs
e Atoms "carry along" molecular topology
as they migrate to new procs
Communication via
nearest-neighbor 6-way stencil

N\
N\

Optimal scaling for MD: N/P

so long as load-balanced

 Computation scales as N/P
e Communication scales bl
sub-linear as (N/P)%/3 o

(for large problems)
* Memory scales as N/P

N NN

ANEANEANEAN

AN NI

ANANANAN

Parallel Efficiency (%)

Parallel performance, EAM

* Fixed-size (32K atoms) and scaled-size (32K atoms/proc) parallel efficiencies

* Metallic solid with EAM potential

Fixed-Size EAM Metallic Solid

100}

90
80¢
70
60}

50r —@-ASCI Red (175)

—®—Ross (58.6)

~@- Liberty (19)

~O~ Spirit (15.4)
Cheetah (40.1)

—-HPCx (19.9) N\

=O—-Blue Gene Light (63.6)

—O—Red Storm (18.2)

40
30}
20}
10

il
64
Processors

1 8

1100
190
180

70

160
150

40

130
120

10

aen
ton

1001
907
807

70

40

Parallel Efficiency (%)

30
20}

10

Scaled-Size EAM Metallic Solid

60
50

—@-ASCI Red (175)
—®—Ross (58.6)
~@- Liberty (19)
~O~ Spirit (15.4)

Cheetah (40.1)
—8-HPCx (19.9)
=O—-Blue Gene Light (63.6)
=0~ Red Storm (18.2)

1 8 64 512 4096 16K 64K
Processors

1100
190
180

70

160
150

40

130
120

10

Cutoff in Force Field

Forces = 80% of CPU cost
Short-range forces = O(N) scaling for classical MD
— constant density assumption
— pre-factor is cutoff-dependent
of pairs/atom = cubic in cutoff
— 2x the cutoff - 8x the work
Use as short a cutoff as can justify:
— LJ = 2.50 (standard) e
— all-atom and UA = 8-12 Angstroms
— bead-spring = 2V/6 g (repulsive only)
— Coulombics = 12-20 Angstroms
— solid-state (metals) = few neighbor shells (due to screening)

Test sensitivity of your results to cutoff

Long-range Coulombics

e Systems that need it:
— Charged polymers (polyelectrolytes)
— Organic & biological molecules
— lonic solids
— Not metals (screening)

 Computational issue:
— Coulomb energy only falls off as 1/r

* Options:
— cutoff scales as N, but large contribution at 10 Angs
— Ewald scales as N3/2
— particle-mesh Ewald scales as Nlog,N

— multipole scales as N (but doesn't beat PME)

Ewald Summation

Replace point charges with p ()= Z, (J exp[G*(r - r)z
T

— extended Gaussians:
Interacting cha rges gives:

22 PO G &
UEE f(ﬁ)zj_,dd mEzi

i=l j>i i=1

Short-range and long-range portion
Ewald method replaces integral with sum over K-points

Parallel:
— requires sum of K-vector across all processors
— MPI_Allreduce operation (scalability issue)

User-specified accuracy + cutoff - G + # of K-points
Scales as N3/2 if grow cutoff as NV/6

Particle-mesh Methods for Coulombics

* Coulomb interactions fall off as 1/r so require long-range for accuracy

e Particle-mesh methods:
partition into short-range and long-range contributions
short-range via direct pairwise interactions
long-range:
interpolate atomic charge to 3d mesh
solve Poisson's equation on mesh (4 FFTs)
interpolate E-fields back to atoms

* FFTs scale as NlogN if cutoff is held fixed

Parallel FFTs

e 3d FFTis 3 sets of 1d FFTs
in parallel, 3d grid is distributed across procs
perform 1d FFTs on-processor
native library or FFTW (www.fftw.org)
1d FFTs, transpose, 1d FFTs, transpose, ...
"transpose” = data transfer
transfer of entire grid is costly

* FFTs for PPPM can scale poorly
on large # of procs and on clusters

* Good news: Cost of PPPM is only ~2x more than 8-10 Angstrom cutoff

Neighbor Lists

Problem: how to efficiently find neighbors within cutoff?

Simple solution:
— for each atom, test against all others
— O(N?) algorithm

Verlet lists:

— Verlet, Phys Rev, 159, p 98 (1967)

_ Rneigh = Rforce + Askin

— build list: once every few timesteps

— other timesteps: scan thru larger list

— for neighbors within force cutoff

— rebuild list: any atom moves 1/2 of skin

Link-cells (bins):

— Hockney, et al,] Comp Phys, 14, p 148 (1974)
— grid simulation box into bins of size R;,,.,

— each timestep: search 27 bins for neighbors

-
) ®o

= |
o)

® o

T ®

.‘.

Neighbor Lists (continued)

* Verlet list is “6x savings over bins

— Vehere = 4/3 mw r3
-V, =271

cube

e Fastest methods do both:
— link-cell to build Verlet list

— Verlet list on non-build timesteps
— O(N) in CPU and memory

— constant-density assumption

— this is what LAMMPS implements

Parallel Efficiency (%)

Parallel performance, rhodopsin

Fixed-size (32K atoms) & scaled-size (32K/proc) parallel efficiencies
Protein (rhodopsin) in solvated lipid bilayer

Billions of atoms on 64K procs of Blue Gene or Red Storm

Opteron speed: 4.5E-5 sec/atom/step (12x for metal, 25x for LJ)

100

®
o

[*2}
[=]

~
o

20

Fixed—size Rhodopsin Protein

—8—-ASCI Red (1.81e+03)
—®—Ross (553)

@~ Liberty (273)

O~ Spirit (138)

Cheetah (290)
—@—-HPCx (131) .
~O~-Blue Gene Light (661) O
—O—Red Storm (145)

1 8 64
Processors

180

160

140

20

100

Parallel Efficiency (%)

20

Scaled-size Rhodopsin Protein

80

60

40}

—@-ASCI Red (1.81e+03)
—®—Ross (553)

@~ Liberty (273)

O~ Spirit (138)

Cheetah (290)

——-HPCx (131)
=O-Blue Gene Light (661)
=0~ Red Storm (145)

1 8 64 512
Processors

4096 16K 64K 0

180

160

140

20

CPU time (s)

miniMD scaling results:
single precision

100

RN
o
|

miniMD microapp performance
10,000 timesteps, 4,000 LJ atoms
single precision

—— T-bird

—#— Barcelona
=4—M90 Dell laptop
—a— Unity

Ny

10 100
cores

1000

miniMD scaling results:
double precision

100

CPU time (s)
o

miniMD microapp performance
10,000 timesteps, 4,000 LJ atoms
double precision

—— T-bird

—=— Barcelona
—4—M90 Dell laptop
—a— Unity

10

cores

100 1000

CPU time (s)

miniMD scaling results:
timings breakdown

100
Lo miniMD microapp performance on Unity
. 10,000 timesteps, 4,000 LJ atoms
10 ~ S .
-
O—o—— S
e N g g o
1 - ~e
O, S
—e—Force time (single prec) N
—o—Neighbor time (single prec) 4
0.1 - —m— Communication time (single prec) *
—&— Force time {double prec)
—&— Neighbor time (double prec)
—B8— Communication time {double prec) $o_ o
0.01 T T ~
1 10 100 1000

cores

