
Been There, Done That:
Lessons Learned from SMP Computing

Michael A. Heroux
Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Outline

A brief (personal) history of SMP computing.
Can we use shared memory parallel (SMP) only?
Can we use distributed memory parallel (DMP) only?
Possibilities for using SMP within DMP.

Performance characterization for preconditioned Krylov methods.
Possibilities for SMP with DMP for each Krylov operation.

Insert: Brief Overview of Petra Object Model.
Implications for multicore chips.
About MPI.

Personal SMP History
Chapter 1: Cray YMP/C90/J90/T90

(Aside: Cray did not know how to name machines)

Macrotasking/Microtasking/Autotasking.
7 out 8 speedup (or less) typical.
Speed-down for 16 out of 16 or 32 out of 32.
Only the “rich” could afford to use it: Job parallel was best.
Complicated fast kernels programming.

Complicated Fast Kernels:
Dense Matrix-Matrix Multiply (SGEMM)

Original Serial

sgemm.s

• Custom assembler
• Peak speed

even at small sizes

Original Parallel

sgemm1.s

• Fortran driver (asm too hard)
• Decompose problem
• Call one or more instances

of renamed asm kernel.
• Huge hit for small sizes.
• Awful for FEM codes.

sgemm.f

sgemm1.s sgemm1.s

Final Parallel

sgemm.s

• Asm with quick size check.
• Fortran driver (only if big)
• Decompose problem
• Call one or more instances

of asm kernel.
• asm kernel parallel-aware.
• Fast but complicated.

sgemm.f

sgemm.s sgemm.s

sgemm.s
Only if big
problem

Personal SMP History
Chapter 2: SGI Origin

Distributed-shared memory (DSM) architecture:
Physically distributed.
Logically shared.

First efforts: Identify and parallelize “hotspots” (OpenMP).
“First-touch” page placement.
Modest gains for some codes.
Disastrous for many.

Second efforts: Parallel OpenMP throughout.
LOTS of work.
Parallelism limited to largest SMP machine.
Still issues of task placement/migration: Complex runtime env.

Best efforts: MPI using good MPI for DSM.
Scalable and portable.
Shared memory is great for large-memory read-only startup tasks.

Personal SMP History
Chapter 3: Multi-node with SMP nodes
One or more SMP nodes connected by dedicated network.
SMP only? MPI only? Hybrid?

SMP-only Possibilities

Question: Is it possible to develop a scalable parallel
application using only shared memory parallel
programming?

SMP-only Observations
Developing a scalable SMP application requires as much work as
DMP:

Still must determine ownership of work and data.
Inability to assert placement of data on DSM architectures is big problem,
not easily fixed.
Study after study illustrates this point.

SMP application requires SMP machine:
Much more expensive per processor than DMP machine.
Poorer fault-tolerance properties.

Number of processor usable by SMP application is limited by
minimum of:

• Operating System and Programming Environment support.
• Global Address Space.
• Physical processor count.

Of these, the OS/Programming Model is the real limiting factor.

SMP-only Possibilities

Question: Is it possible to develop a scalable parallel
application using only shared memory parallel
programming?

Answer: No.

DMP-only Possibilities

Question: Is it possible to develop a scalable parallel
application using only distributed memory parallel
programming?
Answer: Don’t need to ask. Scalable DMP applications
are clearly possible to O(100K-1M) processors.
Thus:

DMP is required for scalable parallel applications.
Question: Is there still a role for SMP within a DMP application?

SMP-Under-DMP Possibilities

Can we benefit from using SMP within DMP?
Example: OpenMP within an MPI process.

Case Study: Linear Equation Solvers

Sandia has many engineering applications.
A large fraction of newer apps are implicit in nature:

Requires solution of many large nonlinear systems.
Boils down to many sparse linear systems.

Linear system solves are large fraction of total time.
Small as 30%.
Large as 90+%.

Iterative solvers most commonly used.
Iterative solvers have small handful of important kernels.
We focus on performance issues for these kernels.

Caveat: These parts do not make the whole, but are a good chunk
of it…

Problem Definition

A frequent requirement for scientific and engineering
computing is to solve:

Ax = b
where A is a known large (sparse) matrix,

b is a known vector,
x is an unknown vector.

Goal: Find x.
Method:

Use Preconditioned Conjugate Gradient (PCG) method,
Or one of many variants, e.g., Preconditioned GMRES.
Called Krylov Solvers.

The performance of a parallel preconditioned Krylov
solver on any given machine can be characterized by the
performance of the following operations:

Vector updates:
Dot Products:
Matrix multiplication:
Preconditioner application:

What can SMP within DMP do to improve performance
for these operations?

Performance Characteristics of
Preconditioned Krylov Solvers

y x yα= +
Tx yδ =

y Ax=
1y M x−=

Machine Block Diagram

Memory

PE 0 PE n-1

Node 0

Memory

PE 0 PE n-1

Node 1

Memory

PE 0 PE n-1

Node m-1

Parallel machine with p = m * n processors,
• m = number of nodes.
• n = number of shared memory processors per node.

Consider
• p MPI processes vs.
• m MPI processes with n threads per MPI process (nested data-

parallel).

Vector Update Performance

Vector computations are not (positively) impacted using nested
parallelism.

These calculations are unaware that they are being done in parallel.
Problems of data locality and false cache line sharing can actually degrade
performance for nested approach.

• Example: What happens if
– PE 0 must update x[j].
– PE 1 must update x[j+1] and
– x[j] and x[j+1] are in the same cache line?

Note: These same observations hold for FEM/FVM calculations and
many other common data parallel computations.

Dot Product Performance

Global dot product performance can be improved using
nested parallelism:

Compute the partial dot product on each node before going to
binary reduction algorithm:

• O(log(m)) global synchronization steps vs.
O(log(p)) for DMP-only.

However, same can be accomplished using “SMP-aware” message
passing library like LIBSM.

Notes:
An SMP-aware message passing library addresses many of the
initial performance problems when porting an MPI code to SMP
nodes.
Reason? Not lower latency of intra-node message but reduced off-
node network demand.

Matrix Multiplication Performance

Typical distributed sparse matrix multiplication requires
“boundary exchange” before computing.
Time for exchange is determined by longest latency remote
access.
Using SMP within a node does not reduce this latency.
SMP matrix multiply has same cache performance issues
as vector updates.
Thus SMP within DMP for matrix multiplication is not
attractive.

Batting Average So Far: 0 for 3
So far there is no compelling reason to consider SMP
within a DMP application.
Problem: Nothing we have proposed so far provides an
essential improvement in algorithms.
Must search for situations where SMP provides a
capability that DMP cannot.
One possibility: Addressing iteration inflation in
(Overlapping) Schwarz domain decomposition
preconditioning.

Iteration Inflation
Overlapping Schwarz Domain Decomposition (Local ILU(0) with

GMRES)

0
50

100
150
200
250
300

1 2 4 8 16 32 64 128 Jac
(Inf)

Number of Processors

N
um

be
r o

f I
te

ra
tio

ns

Using Level Scheduling SMP

As the number of subdomains increases, iteration counts
go up.
Asymptotically, (non-overlapping) Schwarz becomes
diagonal scaling.
But note: ILU has parallelism due to sparsity of matrix.
We can use parallelism within ILU to reduce the inflation
effect.

Defining Levels

21

31

43

51 53

1 0 0 0 0
1 0 0 0

 Solve .0 1 0 0
0 0 1 0

0 0 1

l
L Ly xl

l
l l

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Some Sample Level Schedule Stats
Linear FE basis fns on 3D grid

Avg nnz/level = 5500, Avg rows/level = 173.

0

2000

4000

6000

8000

10000

12000

14000
1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

Level Number

Nu
m

be
r

of
 N

on
ze

ro
s

Linear Stability Analysis Problem
Unstructured domain, 21K eq, 923K nnz

Some Sample Level Schedule Stats
Unstructured linear stability analysis problem

Avg nnz/level = 520, Avg rows/level = 23.

0

200

400

600

800

1000

1200

1400

1 45 89 13
3

17
7

22
1

26
5

30
9

35
3

39
7

44
1

48
5

52
9

57
3

61
7

66
1

70
5

74
9

79
3

83
7

88
1

Level Number

Nu
m

be
r o

f N
on

ze
ro

s

Improvement Limits

Assume number of PEs per node = n.
Assume speedup for level scheduled F/B solve matches
speedup of n MPI solves on same node.
Then performance improvement is

For previous graph and n = 8, p = 128 (m = 16), ratio =
203/142 = 1.43 or 43%.

Number of iterations for domains
Number of iterations for domains

p
m

Practical Limitations

Level scheduling speedup is largely determined by the cost
of synchronization on a node.

F/B solve requires a synchronization after each level.
On machines with good hardware barrier, this is not a problem and
excellent speed up can be expected.
On other machines, this can be a problem.

Reducing Synchronization Restrictions
Use a flexible iterative method such as FGMRES.

Preconditioner at each iteration need not be the same, thus no need for
sync’ing after each level.
Level updates will still be approximately obeyed.
Computational and communication complexity is identical to DMP-
only F/B solve.
Iteration counts and cost per iteration go up.

Multi-color reordering:
Reorder equations to increase level-set sizes.
Severe increase in iteration counts.

Our motto:
The best parallel algorithm is the best parallel
implementation of the best serial algorithm.

SMP-Under-DMP Possibilities

Can we benefit from using SMP within DMP?
Yes, but:

Must be able to take advantage of fine-grain shared memory data
access.
In a way not feasible for MPI-alone.

Even so: Nested SMP-Under-DMP is very complex to
program.
Most people answer, “It’s not worth it.”

Summary So Far

SMP alone is insufficient for scalable parallelism.
DMP alone is certainly sufficient, but can we improve by selective use
of SMP within DMP?
Analysis of key preconditioned Krylov kernels gives insight into
possibilities of using SMP with DMP, and results can be extended to
other algorithms.
Most of the straight-forward techniques for introducing SMP into
DMP will not work.
Level scheduled ILU is one possible example of effectively using SMP
within DMP (not always satisfactory).
Most fruitful use of SMP within DMP seems to have a common theme
of allowing multiple processes to have dynamic asynchronous access
to large (read-only) data sets.

Implications for Multicore Chips

MPI-only use of multicore is a respectable option.
May be the ultimate right answer for scalability and ease of
programming.
Assumption: MPI is multicore-aware. Not completely true right now.
Helpful: High task affinity. Single program image per chip.

Flexible, robust multicore kernels will be complicated.
Task parallelism is preferred if available (Media Player/Outlook).
Similar issues as Cray SMP programming:

• How many cores can (available) or should (problem size) be used?
• Illustrates difference between hetero/homo-geneous multicore.

Data placement issues similar to Origin (if # CMP>1).
Task affinity important.
Mitigating factor:

• On-chip data movement is at processor speeds.
• Shared cache should help?

About MPI
Uncomfortable defending MPI: But…
Can Parallel Programming be Easy?

Memory management is key.
Is it bad that parallel programming hard? Isn’t programming hard?

La-Z-Boy principle* impacts MPI adoption also.
MPI is not that hard, does not impact majority of code.
Real problem: Serial to MPI transition is not gradual.
Can the mass market produce new parallel language
quickly? Not convinced.
Can develop MPI-based code that is portable, today!
Still hope for better.

* Don’t need to write parallel code because uni-processors are getting faster
(No longer applies to next-gen processors).

	Been There, Done That:�Lessons Learned from SMP Computing ��Michael A. Heroux�Sandia National Laboratories
	Outline
	Personal SMP History�Chapter 1: Cray YMP/C90/J90/T90
	Complicated Fast Kernels: �Dense Matrix-Matrix Multiply (SGEMM)
	Personal SMP History�Chapter 2: SGI Origin
	Personal SMP History�Chapter 3: Multi-node with SMP nodes
	SMP-only Possibilities
	SMP-only Observations
	SMP-only Possibilities
	DMP-only Possibilities
	SMP-Under-DMP Possibilities
	Case Study: Linear Equation Solvers
	Problem Definition
	Performance Characteristics of �Preconditioned Krylov Solvers
	Machine Block Diagram
	Vector Update Performance
	Dot Product Performance
	Matrix Multiplication Performance
	Batting Average So Far: 0 for 3
	Iteration Inflation �Overlapping Schwarz Domain Decomposition (Local ILU(0) with GMRES)�
	Using Level Scheduling SMP
	Defining Levels
	Some Sample Level Schedule Stats�Linear FE basis fns on 3D grid�Avg nnz/level = 5500, Avg rows/level = 173.
	Linear Stability Analysis Problem�Unstructured domain, 21K eq, 923K nnz
	Some Sample Level Schedule Stats�Unstructured linear stability analysis problem�Avg nnz/level = 520, Avg rows/level = 23.
	Improvement Limits
	Practical Limitations
	Reducing Synchronization Restrictions
	SMP-Under-DMP Possibilities
	Summary So Far
	Implications for Multicore Chips
	About MPI

