
Git Tips and Tricks

Elijah Newren, Pat Notz

Sandia National Laboratories

March 17, 2009

version: 0.5-56-g5a37-mod



Outline

1 History Layout
Global vs. Local
Sharing Commits
Pull and autosetuprebase
Revision Names

2 Getting Information from git

3 Cleaning Up

4 Multiple Branches, Multiple Repositories

5 Tools and Miscellaneous Tips



Branches and Remote-tracking Branches

Initial State:

sierra-trac repository

A master

Local clone

A



Branches and Remote-tracking Branches

After cloning:

sierra-trac repository

A master

Local clone

A master origin/master



Branches and Remote-tracking Branches

After cloning:

sierra-trac repository

A master

Local clone

A master HEAD origin/master



Branches and Remote-tracking Branches

After committing:

sierra-trac repository

A master

Local clone

A

B master HEAD

origin/master



Branches and Remote-tracking Branches

After committing again:

sierra-trac repository

A master

Local clone

A

B

C master HEAD

origin/master



Branches and Remote-tracking Branches

After someone pushes to sierra-trac:

sierra-trac repository

A

D master

Local clone

A

B

C master HEAD

origin/master



Fetch + Merge + Push

Initial state:

sierra-trac repository

A

D master

Local clone

A

B

C master HEAD

origin/master



Fetch + Merge + Push

$ eg fetch

sierra-trac repository

A

D master

Local clone

A

B

C master HEAD

D origin/master



Fetch + Merge + Push

$ eg merge origin/master

sierra-trac repository

A

D master

Local clone

A

B

C

D origin/master

E



Fetch + Merge + Push

$ eg merge origin/master

sierra-trac repository

A

D master

Local clone

A

B

C

D origin/master

E master HEAD



Fetch + Merge + Push

$ eg push

sierra-trac repository

A

B

C

D

E master

Local clone

A

B

C

D origin/master

E master HEAD



Fetch + Rebase + Push

Initial state:

sierra-trac repository

A

D master

Local clone

A

B

C master HEAD

origin/master



Fetch + Rebase + Push

$ eg fetch

sierra-trac repository

A

D master

Local clone

A

B

C master HEAD

D origin/master



Fetch + Rebase + Push

$ eg rebase --against origin/master

sierra-trac repository

A

D master

Local clone

A

D origin/master
B

C



Fetch + Rebase + Push

$ eg rebase --against origin/master

sierra-trac repository

A

D master

Local clone

A

D origin/master
B

C
B∗



Fetch + Rebase + Push

$ eg rebase --against origin/master

sierra-trac repository

A

D master

Local clone

A

D origin/master
B

C
B∗

C∗



Fetch + Rebase + Push

$ eg rebase --against origin/master

sierra-trac repository

A

D master

Local clone

A

D origin/master
B

C
B∗

C∗ master HEAD



Fetch + Rebase + Push

$ eg push

sierra-trac repository

A

D

B∗

C∗ master

Local clone

A

D origin/master
B

C
B∗

C∗ master HEAD



Pull and branch.autosetuprebase config setting

By default,

eg pull =

 eg fetch
+

eg merge REMOTE-TRACKING-BRANCH

If branch.<current branch>.rebase is true,

eg pull =

 eg fetch
+

eg rebase --against REMOTE-TRACKING-BRANCH

branch.autosetuprebase headaches:

When a new branch (<new branch>) is created, sets
branch.<new branch>.rebase = true

..at least it is supposed to.
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..at least it is supposed to.



Revision Names

Suffixes:
^n = nth parent
~n = nth ancestor following 1st parents (~n = ^1^1...^1)

Local Repository

A

B

C

D

E master

Local Commit Names
E = master
C = master^1 = master~1
D = master^2
B = master^1^1 = master~2
A = master~3 or A = master^2~1

Or, use globally unique identifiers shown in eg log or gitk (e.g.
E=a99816d0b6c626befb0234485b4964887faca4d5), or their
abbreviation (e.g. E=a99816d0b)
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Viewing Changes with gitk

$ gitk &

Dialog on right from View→New View (or press F4).



Viewing Changes with Diff (1/2) — revisions and
paths

eg diff [options] FROM TO -- PATHS

FROM - revision specifier, defaulting to HEAD

TO - revision specifier, or the working copy if not specified

# See the changes between HEAD and the working copy
$ eg diff

# See the changes between master~1 and the working copy
$ eg diff master~1

# See the changes between origin/master and master
$ eg diff origin/master master

# See the changes to framework since master~2
$ eg diff master~2 -- framework



Viewing Changes with Diff (2/2) — high level stats

Diff has various forms of high level statistics:

eg diff --name-only # Just list the names of the changed files

eg diff --name-status # List files that changed and the type of change

eg diff --stat # List files that changed and lines added and removed

eg diff --dirstat # List directories by percentage of line changes

eg diff --shortstat # List the overall line change count



Viewing commits with eg log

Initial state after eg fetch

Local clone

A

B

C master HEAD

D origin/master



Viewing commits with eg log

$ eg log

Local clone

A

B

C master HEAD

D origin/master

log output

commit message for A

commit message for B

commit message for C

Shows all commits in master



Viewing commits with eg log

$ eg log origin/master..master

Local clone

A

B

C master HEAD

D origin/master

log output

commit message for B

commit message for C

Shows all commits in master that are not in origin/master



Viewing commits with eg log

$ eg log master..origin/master

Local clone

A

B

C master HEAD

D origin/master

log output

commit message for D

Shows all commits in origin/master that are not in master



Viewing commits with eg log

$ eg log origin/master...master

Local clone

A

B

C master HEAD

D origin/master

log output

commit message for B

commit message for D

commit message for C

Shows all commits that are in exactly one of origin/master and master

(log output is ordered by date)



Getting more info out of eg log

Commit Messages + Changes
eg log shows commit information only by default, but can also show the
changes made in a commit (in diff/patch format):

$ eg log -p . . .

High level change statistics
You can also use the same high level statistic flags as with eg diff, instead
of (or in addition to) passing the -p flag to eg log: --name-only,
--name-status, --stat, --dirstat, and --shortstat.

Data Mining
All “View” options from gitk (and some extras) can be accessed from eg
log; for example:

--author=author regex
--grep=commit message regex
--since=date string
--until=date string
-Stext to find in a file change
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Getting more info out of eg log

Commit Messages + Changes
eg log shows commit information only by default, but can also show the
changes made in a commit (in diff/patch format):

$ eg log -p . . .

High level change statistics
You can also use the same high level statistic flags as with eg diff, instead
of (or in addition to) passing the -p flag to eg log: --name-only,
--name-status, --stat, --dirstat, and --shortstat.

Data Mining
All “View” options from gitk (and some extras) can be accessed from eg
log; for example:

--author=author regex
--grep=commit message regex
--since=date string
--until=date string
-Stext to find in a file change



Getting less info out of the log

eg log can provide a lot of information. Sometimes, you want less — just the
one-line summaries, grouped by author. In such cases, use shortlog. An
example:

$ eg shortlog Sierra_4_10_branch..master



Searching for text in files with eg grep

You can look for string or regex matches in currently checked out files

$ eg grep PATTERN

This is nicer than standard grep in that it skips executables, test results, and
other untracked files.

You can also search in files of a different revision

$ eg grep PATTERN REVISION

and/or search in a specific list of files and directories:

$ eg grep PATTERN REVISION -- DIRECTORY
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You can look for string or regex matches in currently checked out files
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Rebasing

Starting point:

Local repository

A

B

C

D

E

origin/master

master HEAD



Rebasing

$ eg rebase --against origin/master

Local repository

A

B

C

D

E

origin/master

master HEAD



Rebasing

$ eg rebase --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD



Rebasing

$ eg rebase --against origin/master

Local repository

A

B

C

D

E

origin/master

master

B∗ HEAD



Rebasing

$ eg rebase --against origin/master

Local repository

A

B

C

D

E

origin/master

master

B∗

C∗ HEAD



Rebasing

$ eg rebase --against origin/master

Local repository

A

B

C

D

E

origin/master

B∗

C∗ master HEAD

Merge commits are dropped during rebases, so E is not applied.



Rebasing

$ eg rebase --against origin/master

Local repository

A

B

C

D

E

origin/master

B∗

C∗ master HEAD

Merge commits are dropped during rebases, so E is not applied.



Interactive Rebasing (1/3) – Basic Rebasing

Starting point:

Local repository

A

B

C

D

E

origin/master

master

HEAD

Terminal
$



Interactive Rebasing (1/3) – Basic Rebasing

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Terminal
$ eg rebase -i --against origin/master



Interactive Rebasing (1/3) – Basic Rebasing

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick b6bafc0 Commit message B
pick 44a6ae8 Commit message C

# Rebase e67fc45..fc16033 onto e67fc45
#
# Commands:
# p, pick = use commit
# e, edit = use commit, but stop for amending
# s, squash = use commit, but meld into previous commit
#
# If you remove a line here THAT COMMIT WILL BE LOST.
# However, if you remove everything, the rebase will be aborted.
#

Unnecessary merge commit E automatically
dropped



Interactive Rebasing (1/3) – Basic Rebasing

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick b6bafc0 Commit message B
pick 44a6ae8 Commit message C

# Rebase e67fc45..fc16033 onto e67fc45
#
# Commands:
# p, pick = use commit
# e, edit = use commit, but stop for amending
# s, squash = use commit, but meld into previous commit
#
# If you remove a line here THAT COMMIT WILL BE LOST.
# However, if you remove everything, the rebase will be aborted.
#

Save and exit editor



Interactive Rebasing (1/3) – Basic Rebasing

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

B∗

C∗

origin/master

master

HEAD

Terminal
Rebasing (1/2)
Rebasing (2/2)
Successfully rebased and updated refs/heads/master.
$



Interactive Rebasing (2/3) – Reordering Commits

Starting point:

Local repository

A

B

C

D

E

origin/master

master

HEAD

Terminal
$



Interactive Rebasing (2/3) – Reordering Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Terminal
$ eg rebase -i --against origin/master



Interactive Rebasing (2/3) – Reordering Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick b6bafc0 Commit message B
pick 44a6ae8 Commit message C

# Rebase e67fc45..fc16033 onto e67fc45
#
# Commands:
# p, pick = use commit
# e, edit = use commit, but stop for amending
# s, squash = use commit, but meld into previous commit
#
# If you remove a line here THAT COMMIT WILL BE LOST.
# However, if you remove everything, the rebase will be aborted.
#

Unnecessary merge commit E automatically
dropped



Interactive Rebasing (2/3) – Reordering Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick 44a6ae8 Commit message C
pick b6bafc0 Commit message B

# Rebase e67fc45..fc16033 onto e67fc45
#
# Commands:
# p, pick = use commit
# e, edit = use commit, but stop for amending
# s, squash = use commit, but meld into previous commit
#
# If you remove a line here THAT COMMIT WILL BE LOST.
# However, if you remove everything, the rebase will be aborted.
#

Change the order of the commits



Interactive Rebasing (2/3) – Reordering Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick 44a6ae8 Commit message C
pick b6bafc0 Commit message B

# Rebase e67fc45..fc16033 onto e67fc45
#
# Commands:
# p, pick = use commit
# e, edit = use commit, but stop for amending
# s, squash = use commit, but meld into previous commit
#
# If you remove a line here THAT COMMIT WILL BE LOST.
# However, if you remove everything, the rebase will be aborted.
#

Save and exit editor



Interactive Rebasing (2/3) – Reordering Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

C∗

B∗

origin/master

master

HEAD

Terminal
Rebasing (1/2)
Rebasing (2/2)
Successfully rebased and updated refs/heads/master.
$



Interactive Rebasing (3/3) – Squashing Commits

Starting point:

Local repository

A

B

C

D

E

origin/master

master

HEAD

Terminal
$



Interactive Rebasing (3/3) – Squashing Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Terminal
$ eg rebase -i --against origin/master



Interactive Rebasing (3/3) – Squashing Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick b6bafc0 Commit message B
pick 44a6ae8 Commit message C

# Rebase e67fc45..fc16033 onto e67fc45
#
# Commands:
# p, pick = use commit
# e, edit = use commit, but stop for amending
# s, squash = use commit, but meld into previous commit
#
# If you remove a line here THAT COMMIT WILL BE LOST.
# However, if you remove everything, the rebase will be aborted.
#

Unnecessary merge commit E automatically
dropped



Interactive Rebasing (3/3) – Squashing Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick b6bafc0 Commit message B
squash 44a6ae8 Commit message C

# Rebase e67fc45..fc16033 onto e67fc45
#
# Commands:
# p, pick = use commit
# e, edit = use commit, but stop for amending
# s, squash = use commit, but meld into previous commit
#
# If you remove a line here THAT COMMIT WILL BE LOST.
# However, if you remove everything, the rebase will be aborted.
#

Change pick to squash for commit C



Interactive Rebasing (3/3) – Squashing Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick b6bafc0 Commit message B
squash 44a6ae8 Commit message C

# Rebase e67fc45..fc16033 onto e67fc45
#
# Commands:
# p, pick = use commit
# e, edit = use commit, but stop for amending
# s, squash = use commit, but meld into previous commit
#
# If you remove a line here THAT COMMIT WILL BE LOST.
# However, if you remove everything, the rebase will be aborted.
#

Save and exit editor



Interactive Rebasing (3/3) – Squashing Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

BC∗

origin/master

master

HEAD

Editor
# This is a combination of two commits.
# The first commit’s message is:

Commit message B

# This is the 2nd commit message:

Commit message C

# Please enter the commit message for your changes. Lines starting
# with ’#’ will be ignored, and an empty message aborts the commit.
# Not currently on any branch.
# Changes to be committed:
# (use "git reset HEAD <file>..." to unstage)
#
# modified: A
#

Edit commit message for the ombined commit
Save and exit editor



Squashing

Starting point:

Local repository

A

B

C

D

E

origin/master

master HEAD



Squashing

$ eg squash [--against origin/master]

Local repository

A

B

C

D

E

origin/master

master HEAD



Squashing

$ eg squash [--against origin/master]

Local repository

A

B

C

D

E

origin/master

BCE∗ master HEAD



Amending Commits

Starting point:

Local repository

A

B origin/master

C

D master HEAD



Amending Commits

$ eg commit --amend

Local repository

A

B origin/master

C

D
D∗ master HEAD



Undoing/Redoing Commits

Starting point:

Local repository

A

B origin/master

C

E master HEAD

ORIG_HEAD



Undoing/Redoing Commits

$ eg reset --working-copy origin/master

Local repository

A

B origin/master

C

E

master HEAD

ORIG_HEAD

--working-copy: Make sure the working copy exactly matches the
specified commit.



Undoing/Redoing Commits

$ eg reset --working-copy ORIG_HEAD

Local repository

A

B origin/master

C

E master HEAD

ORIG_HEAD

ORIG_HEAD: set by merge, rebase, and reset.



Undoing/Redoing Commits

$ eg pull

Local repository

A

B origin/master

C

E

D

F

G
master HEAD

ORIG_HEAD

ORIG_HEAD: set by merge, rebase, and reset.



Undoing/Redoing Commits

$ eg reset --working-copy ORIG_HEAD

Local repository

A

B origin/master

C

E

D

F

G
master HEAD

ORIG_HEAD

ORIG_HEAD: set by merge, rebase, and reset.



Undoing/Redoing Commits

$ eg reset --working-copy master~1

Local repository

A

B origin/master

C

E

D

F

G
master HEAD

ORIG_HEAD



Undoing/Redoing Commits

$ eg reset --working-copy master@{4}

Local repository

A

B origin/master

C

E

master HEAD

D

F

G

ORIG_HEAD

To see where master previously pointed, run
eg reflog show master



Undoing/Redoing Commits

$ eg reset --working-copy master@{“30 seconds ago”}

Local repository

A

B origin/master

C

E

D

F

G
master HEAD

ORIG_HEAD

To see where master previously pointed, run
eg reflog show master
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Topic Branches

Starting point:

Local repository

A

B

C

origin/master

master HEAD



Topic Branches

$ eg branch experiment

Local repository

A

B

C

origin/master

master HEAD experiment



Topic Branches

After making a commit

Local repository

A

B

C

origin/master

experiment

D master HEAD



Topic Branches

$ eg switch experiment

Local repository

A

B

C

origin/master

experiment

D master

HEAD



Topic Branches

After making a commit

Local repository

A

B

C

origin/master

D master E experiment HEAD



Topic Branches

...and another commit

Local repository

A

B

C

origin/master

D master E

F experiment HEAD



Topic Branches

$ eg branch uber-goo master~2

Local repository

A

B

C
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Topic Branches

$ eg switch uber-goo
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Topic Branches

$ eg branch new-stuff origin/master
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Direct Collaboration (Remotes)

$ eg remote add jim machine:/PATH...

sierra-trac

A

D master

Jim’s clone

A

D

E master

F bugs

Local clone

A

B

C

master HEAD

origin/master



Direct Collaboration (Remotes)

$ eg fetch jim
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Direct Collaboration (Remotes)

$ eg remote rm origin
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Direct Collaboration (Remotes)

$ eg remote rename jim origin
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Direct Collaboration (Remotes)

Use eg remote show or eg info to see remotes.
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Ignoring Files

Git provides three mechanisms for ignoring files

.gitignore files – can be checked-in and shared via repository

$GIT_DIR/info/excludes file – local to a project/clone (personal)

core.excludesfile configuration paramter – can be per-project or
global (personal)

Common usage

Setup a ∼/.gitignore file for all your Git projects

$ echo checkin-comments.txt > ∼/.gitignore
$ echo /tests/ >> ∼/.gitignore
$ echo \*.bak >> ∼/.gitignore
$ git config --global core.excludesfile ∼/.gitignore
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Stashing Changes

Motivation
You want save off your uncommitted changes to clear out your working
copy but you’re not ready to do a commit.

Sometimes you want to
safely do a pull. . .
switch to another branch to work on something else. . .
experiment with different changes. . .

. . . without making a commit.
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Stashing Changes

$ eg status
(On branch master)
Changes ready to be committed ("staged"):

modified: texmf-paths.sh
Changed but not updated ("unstaged"):

modified: git-sierra-advanced.tex

$ eg stash
Saved working directory and index state "WIP on master: 5395e8a Lead with ./ in the texmf path search."
HEAD is now at 5395e8a Lead with ./ in the texmf path search.
(To restore them type "git stash apply")

$ eg stash list
5395e8a Lead with ./ in the texmf path search.
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Stashing Changes

$ eg stash pop
# On branch master
# Your branch is ahead of ’origin/master’ by 1 commit.
#
# Changed but not updated:
# (use "git add <file>..." to update what will be committed)
# (use "git checkout - <file>..." to discard changes in working directory)
#
# modified: git-sierra-advanced.tex
# modified: texmf-paths.sh
#
no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@0 (3033e15e15e0b4037cbaafbdfdff89ec578aa90f)



Questions?

version: 0.5-56-g5a37-mod



Users of Core Git

For the most part you can replace eg with git in all the commands listed in this
presentation. There are some exceptions:

eg rebase --against . . .
⇒ git rebase . . .

eg diff (no arguments)
⇒ git diff HEAD

eg squash --against . . .
⇒ git reset --soft . . . && git commit

eg reset --working-copy . . .
⇒ git reset --hard . . .

eg switch . . .
⇒ git checkout . . .

If after doing this command translation, you again replace git with eg, the
commands will continue to work in all cases. (eg accepts a superset of the input
that git accepts)
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