
Git Tips and Tricks

Elijah Newren, Pat Notz

Sandia National Laboratories

March 17, 2009

version: 0.5-56-g5a37-mod

Outline

1 History Layout
Global vs. Local
Sharing Commits
Pull and autosetuprebase
Revision Names

2 Getting Information from git

3 Cleaning Up

4 Multiple Branches, Multiple Repositories

5 Tools and Miscellaneous Tips

Branches and Remote-tracking Branches

Initial State:

sierra-trac repository

A master

Local clone

A

Branches and Remote-tracking Branches

After cloning:

sierra-trac repository

A master

Local clone

A master origin/master

Branches and Remote-tracking Branches

After cloning:

sierra-trac repository

A master

Local clone

A master HEAD origin/master

Branches and Remote-tracking Branches

After committing:

sierra-trac repository

A master

Local clone

A

B master HEAD

origin/master

Branches and Remote-tracking Branches

After committing again:

sierra-trac repository

A master

Local clone

A

B

C master HEAD

origin/master

Branches and Remote-tracking Branches

After someone pushes to sierra-trac:

sierra-trac repository

A

D master

Local clone

A

B

C master HEAD

origin/master

Fetch + Merge + Push

Initial state:

sierra-trac repository

A

D master

Local clone

A

B

C master HEAD

origin/master

Fetch + Merge + Push

$ eg fetch

sierra-trac repository

A

D master

Local clone

A

B

C master HEAD

D origin/master

Fetch + Merge + Push

$ eg merge origin/master

sierra-trac repository

A

D master

Local clone

A

B

C

D origin/master

E

Fetch + Merge + Push

$ eg merge origin/master

sierra-trac repository

A

D master

Local clone

A

B

C

D origin/master

E master HEAD

Fetch + Merge + Push

$ eg push

sierra-trac repository

A

B

C

D

E master

Local clone

A

B

C

D origin/master

E master HEAD

Fetch + Rebase + Push

Initial state:

sierra-trac repository

A

D master

Local clone

A

B

C master HEAD

origin/master

Fetch + Rebase + Push

$ eg fetch

sierra-trac repository

A

D master

Local clone

A

B

C master HEAD

D origin/master

Fetch + Rebase + Push

$ eg rebase --against origin/master

sierra-trac repository

A

D master

Local clone

A

D origin/master
B

C

Fetch + Rebase + Push

$ eg rebase --against origin/master

sierra-trac repository

A

D master

Local clone

A

D origin/master
B

C
B∗

Fetch + Rebase + Push

$ eg rebase --against origin/master

sierra-trac repository

A

D master

Local clone

A

D origin/master
B

C
B∗

C∗

Fetch + Rebase + Push

$ eg rebase --against origin/master

sierra-trac repository

A

D master

Local clone

A

D origin/master
B

C
B∗

C∗ master HEAD

Fetch + Rebase + Push

$ eg push

sierra-trac repository

A

D

B∗

C∗ master

Local clone

A

D origin/master
B

C
B∗

C∗ master HEAD

Pull and branch.autosetuprebase config setting

By default,

eg pull =

 eg fetch
+

eg merge REMOTE-TRACKING-BRANCH

If branch.<current branch>.rebase is true,

eg pull =

 eg fetch
+

eg rebase --against REMOTE-TRACKING-BRANCH

branch.autosetuprebase headaches:

When a new branch (<new branch>) is created, sets
branch.<new branch>.rebase = true

..at least it is supposed to.

Pull and branch.autosetuprebase config setting

By default,

eg pull =

 eg fetch
+

eg merge REMOTE-TRACKING-BRANCH

If branch.<current branch>.rebase is true,

eg pull =

 eg fetch
+

eg rebase --against REMOTE-TRACKING-BRANCH

branch.autosetuprebase headaches:

When a new branch (<new branch>) is created, sets
branch.<new branch>.rebase = true

..at least it is supposed to.

Pull and branch.autosetuprebase config setting

By default,

eg pull =

 eg fetch
+

eg merge REMOTE-TRACKING-BRANCH

If branch.<current branch>.rebase is true,

eg pull =

 eg fetch
+

eg rebase --against REMOTE-TRACKING-BRANCH

branch.autosetuprebase headaches:

When a new branch (<new branch>) is created, sets
branch.<new branch>.rebase = true

..at least it is supposed to.

Pull and branch.autosetuprebase config setting

By default,

eg pull =

 eg fetch
+

eg merge REMOTE-TRACKING-BRANCH

If branch.<current branch>.rebase is true,

eg pull =

 eg fetch
+

eg rebase --against REMOTE-TRACKING-BRANCH

branch.autosetuprebase headaches:

When a new branch (<new branch>) is created, sets
branch.<new branch>.rebase = true

..at least it is supposed to.

Pull and branch.autosetuprebase config setting

By default,

eg pull =

 eg fetch
+

eg merge REMOTE-TRACKING-BRANCH

If branch.<current branch>.rebase is true,

eg pull =

 eg fetch
+

eg rebase --against REMOTE-TRACKING-BRANCH

branch.autosetuprebase headaches:

When a new branch (<new branch>) is created, sets
branch.<new branch>.rebase = true

..at least it is supposed to.

Revision Names

Suffixes:
^n = nth parent
~n = nth ancestor following 1st parents (~n = ^1^1...^1)

Local Repository

A

B

C

D

E master

Local Commit Names
E = master
C = master^1 = master~1
D = master^2
B = master^1^1 = master~2
A = master~3 or A = master^2~1

Or, use globally unique identifiers shown in eg log or gitk (e.g.
E=a99816d0b6c626befb0234485b4964887faca4d5), or their
abbreviation (e.g. E=a99816d0b)

Revision Names

Suffixes:
^n = nth parent
~n = nth ancestor following 1st parents (~n = ^1^1...^1)

Local Repository

A

B

C

D

E master

Local Commit Names
E = master
C = master^1 = master~1
D = master^2
B = master^1^1 = master~2
A = master~3 or A = master^2~1

Or, use globally unique identifiers shown in eg log or gitk (e.g.
E=a99816d0b6c626befb0234485b4964887faca4d5), or their
abbreviation (e.g. E=a99816d0b)

Revision Names

Suffixes:
^n = nth parent
~n = nth ancestor following 1st parents (~n = ^1^1...^1)

Local Repository

A

B

C

D

E master

Local Commit Names
E = master
C = master^1 = master~1
D = master^2
B = master^1^1 = master~2
A = master~3 or A = master^2~1

Or, use globally unique identifiers shown in eg log or gitk (e.g.
E=a99816d0b6c626befb0234485b4964887faca4d5), or their
abbreviation (e.g. E=a99816d0b)

Revision Names

Suffixes:
^n = nth parent
~n = nth ancestor following 1st parents (~n = ^1^1...^1)

Local Repository

A

B

C

D

E master

Local Commit Names
E = master
C = master^1 = master~1
D = master^2
B = master^1^1 = master~2
A = master~3 or A = master^2~1

Or, use globally unique identifiers shown in eg log or gitk (e.g.
E=a99816d0b6c626befb0234485b4964887faca4d5), or their
abbreviation (e.g. E=a99816d0b)

Outline

1 History Layout

2 Getting Information from git
Viewing Changes with gitk
Viewing Changes with eg diff
Viewing and Digging for changes with eg log
Searching for text in files with eg grep

3 Cleaning Up

4 Multiple Branches, Multiple Repositories

5 Tools and Miscellaneous Tips

Viewing Changes with gitk

$ gitk &

Dialog on right from View→New View (or press F4).

Viewing Changes with Diff (1/2) — revisions and
paths

eg diff [options] FROM TO -- PATHS

FROM - revision specifier, defaulting to HEAD

TO - revision specifier, or the working copy if not specified

See the changes between HEAD and the working copy
$ eg diff

See the changes between master~1 and the working copy
$ eg diff master~1

See the changes between origin/master and master
$ eg diff origin/master master

See the changes to framework since master~2
$ eg diff master~2 -- framework

Viewing Changes with Diff (2/2) — high level stats

Diff has various forms of high level statistics:

eg diff --name-only # Just list the names of the changed files

eg diff --name-status # List files that changed and the type of change

eg diff --stat # List files that changed and lines added and removed

eg diff --dirstat # List directories by percentage of line changes

eg diff --shortstat # List the overall line change count

Viewing commits with eg log

Initial state after eg fetch

Local clone

A

B

C master HEAD

D origin/master

Viewing commits with eg log

$ eg log

Local clone

A

B

C master HEAD

D origin/master

log output

commit message for A

commit message for B

commit message for C

Shows all commits in master

Viewing commits with eg log

$ eg log origin/master..master

Local clone

A

B

C master HEAD

D origin/master

log output

commit message for B

commit message for C

Shows all commits in master that are not in origin/master

Viewing commits with eg log

$ eg log master..origin/master

Local clone

A

B

C master HEAD

D origin/master

log output

commit message for D

Shows all commits in origin/master that are not in master

Viewing commits with eg log

$ eg log origin/master...master

Local clone

A

B

C master HEAD

D origin/master

log output

commit message for B

commit message for D

commit message for C

Shows all commits that are in exactly one of origin/master and master

(log output is ordered by date)

Getting more info out of eg log

Commit Messages + Changes
eg log shows commit information only by default, but can also show the
changes made in a commit (in diff/patch format):

$ eg log -p . . .

High level change statistics
You can also use the same high level statistic flags as with eg diff, instead
of (or in addition to) passing the -p flag to eg log: --name-only,
--name-status, --stat, --dirstat, and --shortstat.

Data Mining
All “View” options from gitk (and some extras) can be accessed from eg
log; for example:

--author=author regex
--grep=commit message regex
--since=date string
--until=date string
-Stext to find in a file change

Getting more info out of eg log

Commit Messages + Changes
eg log shows commit information only by default, but can also show the
changes made in a commit (in diff/patch format):

$ eg log -p . . .

High level change statistics
You can also use the same high level statistic flags as with eg diff, instead
of (or in addition to) passing the -p flag to eg log: --name-only,
--name-status, --stat, --dirstat, and --shortstat.

Data Mining
All “View” options from gitk (and some extras) can be accessed from eg
log; for example:

--author=author regex
--grep=commit message regex
--since=date string
--until=date string
-Stext to find in a file change

Getting more info out of eg log

Commit Messages + Changes
eg log shows commit information only by default, but can also show the
changes made in a commit (in diff/patch format):

$ eg log -p . . .

High level change statistics
You can also use the same high level statistic flags as with eg diff, instead
of (or in addition to) passing the -p flag to eg log: --name-only,
--name-status, --stat, --dirstat, and --shortstat.

Data Mining
All “View” options from gitk (and some extras) can be accessed from eg
log; for example:

--author=author regex
--grep=commit message regex
--since=date string
--until=date string
-Stext to find in a file change

Getting less info out of the log

eg log can provide a lot of information. Sometimes, you want less — just the
one-line summaries, grouped by author. In such cases, use shortlog. An
example:

$ eg shortlog Sierra_4_10_branch..master

Searching for text in files with eg grep

You can look for string or regex matches in currently checked out files

$ eg grep PATTERN

This is nicer than standard grep in that it skips executables, test results, and
other untracked files.

You can also search in files of a different revision

$ eg grep PATTERN REVISION

and/or search in a specific list of files and directories:

$ eg grep PATTERN REVISION -- DIRECTORY

Searching for text in files with eg grep

You can look for string or regex matches in currently checked out files

$ eg grep PATTERN

This is nicer than standard grep in that it skips executables, test results, and
other untracked files.

You can also search in files of a different revision

$ eg grep PATTERN REVISION

and/or search in a specific list of files and directories:

$ eg grep PATTERN REVISION -- DIRECTORY

Searching for text in files with eg grep

You can look for string or regex matches in currently checked out files

$ eg grep PATTERN

This is nicer than standard grep in that it skips executables, test results, and
other untracked files.

You can also search in files of a different revision

$ eg grep PATTERN REVISION

and/or search in a specific list of files and directories:

$ eg grep PATTERN REVISION -- DIRECTORY

Searching for text in files with eg grep

You can look for string or regex matches in currently checked out files

$ eg grep PATTERN

This is nicer than standard grep in that it skips executables, test results, and
other untracked files.

You can also search in files of a different revision

$ eg grep PATTERN REVISION

and/or search in a specific list of files and directories:

$ eg grep PATTERN REVISION -- DIRECTORY

Outline

1 History Layout

2 Getting Information from git

3 Cleaning Up
Rebasing (replaying) sequences of commits
Squashing commits together
Amending commits
Undoing and redoing commits

4 Multiple Branches, Multiple Repositories

5 Tools and Miscellaneous Tips

Rebasing

Starting point:

Local repository

A

B

C

D

E

origin/master

master HEAD

Rebasing

$ eg rebase --against origin/master

Local repository

A

B

C

D

E

origin/master

master HEAD

Rebasing

$ eg rebase --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Rebasing

$ eg rebase --against origin/master

Local repository

A

B

C

D

E

origin/master

master

B∗ HEAD

Rebasing

$ eg rebase --against origin/master

Local repository

A

B

C

D

E

origin/master

master

B∗

C∗ HEAD

Rebasing

$ eg rebase --against origin/master

Local repository

A

B

C

D

E

origin/master

B∗

C∗ master HEAD

Merge commits are dropped during rebases, so E is not applied.

Rebasing

$ eg rebase --against origin/master

Local repository

A

B

C

D

E

origin/master

B∗

C∗ master HEAD

Merge commits are dropped during rebases, so E is not applied.

Interactive Rebasing (1/3) – Basic Rebasing

Starting point:

Local repository

A

B

C

D

E

origin/master

master

HEAD

Terminal
$

Interactive Rebasing (1/3) – Basic Rebasing

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Terminal
$ eg rebase -i --against origin/master

Interactive Rebasing (1/3) – Basic Rebasing

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick b6bafc0 Commit message B
pick 44a6ae8 Commit message C

Rebase e67fc45..fc16033 onto e67fc45
#
Commands:
p, pick = use commit
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

Unnecessary merge commit E automatically
dropped

Interactive Rebasing (1/3) – Basic Rebasing

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick b6bafc0 Commit message B
pick 44a6ae8 Commit message C

Rebase e67fc45..fc16033 onto e67fc45
#
Commands:
p, pick = use commit
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

Save and exit editor

Interactive Rebasing (1/3) – Basic Rebasing

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

B∗

C∗

origin/master

master

HEAD

Terminal
Rebasing (1/2)
Rebasing (2/2)
Successfully rebased and updated refs/heads/master.
$

Interactive Rebasing (2/3) – Reordering Commits

Starting point:

Local repository

A

B

C

D

E

origin/master

master

HEAD

Terminal
$

Interactive Rebasing (2/3) – Reordering Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Terminal
$ eg rebase -i --against origin/master

Interactive Rebasing (2/3) – Reordering Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick b6bafc0 Commit message B
pick 44a6ae8 Commit message C

Rebase e67fc45..fc16033 onto e67fc45
#
Commands:
p, pick = use commit
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

Unnecessary merge commit E automatically
dropped

Interactive Rebasing (2/3) – Reordering Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick 44a6ae8 Commit message C
pick b6bafc0 Commit message B

Rebase e67fc45..fc16033 onto e67fc45
#
Commands:
p, pick = use commit
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

Change the order of the commits

Interactive Rebasing (2/3) – Reordering Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick 44a6ae8 Commit message C
pick b6bafc0 Commit message B

Rebase e67fc45..fc16033 onto e67fc45
#
Commands:
p, pick = use commit
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

Save and exit editor

Interactive Rebasing (2/3) – Reordering Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

C∗

B∗

origin/master

master

HEAD

Terminal
Rebasing (1/2)
Rebasing (2/2)
Successfully rebased and updated refs/heads/master.
$

Interactive Rebasing (3/3) – Squashing Commits

Starting point:

Local repository

A

B

C

D

E

origin/master

master

HEAD

Terminal
$

Interactive Rebasing (3/3) – Squashing Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Terminal
$ eg rebase -i --against origin/master

Interactive Rebasing (3/3) – Squashing Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick b6bafc0 Commit message B
pick 44a6ae8 Commit message C

Rebase e67fc45..fc16033 onto e67fc45
#
Commands:
p, pick = use commit
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

Unnecessary merge commit E automatically
dropped

Interactive Rebasing (3/3) – Squashing Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick b6bafc0 Commit message B
squash 44a6ae8 Commit message C

Rebase e67fc45..fc16033 onto e67fc45
#
Commands:
p, pick = use commit
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

Change pick to squash for commit C

Interactive Rebasing (3/3) – Squashing Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

origin/master

master

HEAD

Editor
pick b6bafc0 Commit message B
squash 44a6ae8 Commit message C

Rebase e67fc45..fc16033 onto e67fc45
#
Commands:
p, pick = use commit
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

Save and exit editor

Interactive Rebasing (3/3) – Squashing Commits

$ eg rebase --interactive --against origin/master

Local repository

A

B

C

D

E

BC∗

origin/master

master

HEAD

Editor
This is a combination of two commits.
The first commit’s message is:

Commit message B

This is the 2nd commit message:

Commit message C

Please enter the commit message for your changes. Lines starting
with ’#’ will be ignored, and an empty message aborts the commit.
Not currently on any branch.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: A
#

Edit commit message for the ombined commit
Save and exit editor

Squashing

Starting point:

Local repository

A

B

C

D

E

origin/master

master HEAD

Squashing

$ eg squash [--against origin/master]

Local repository

A

B

C

D

E

origin/master

master HEAD

Squashing

$ eg squash [--against origin/master]

Local repository

A

B

C

D

E

origin/master

BCE∗ master HEAD

Amending Commits

Starting point:

Local repository

A

B origin/master

C

D master HEAD

Amending Commits

$ eg commit --amend

Local repository

A

B origin/master

C

D
D∗ master HEAD

Undoing/Redoing Commits

Starting point:

Local repository

A

B origin/master

C

E master HEAD

ORIG_HEAD

Undoing/Redoing Commits

$ eg reset --working-copy origin/master

Local repository

A

B origin/master

C

E

master HEAD

ORIG_HEAD

--working-copy: Make sure the working copy exactly matches the
specified commit.

Undoing/Redoing Commits

$ eg reset --working-copy ORIG_HEAD

Local repository

A

B origin/master

C

E master HEAD

ORIG_HEAD

ORIG_HEAD: set by merge, rebase, and reset.

Undoing/Redoing Commits

$ eg pull

Local repository

A

B origin/master

C

E

D

F

G
master HEAD

ORIG_HEAD

ORIG_HEAD: set by merge, rebase, and reset.

Undoing/Redoing Commits

$ eg reset --working-copy ORIG_HEAD

Local repository

A

B origin/master

C

E

D

F

G
master HEAD

ORIG_HEAD

ORIG_HEAD: set by merge, rebase, and reset.

Undoing/Redoing Commits

$ eg reset --working-copy master~1

Local repository

A

B origin/master

C

E

D

F

G
master HEAD

ORIG_HEAD

Undoing/Redoing Commits

$ eg reset --working-copy master@{4}

Local repository

A

B origin/master

C

E

master HEAD

D

F

G

ORIG_HEAD

To see where master previously pointed, run
eg reflog show master

Undoing/Redoing Commits

$ eg reset --working-copy master@{“30 seconds ago”}

Local repository

A

B origin/master

C

E

D

F

G
master HEAD

ORIG_HEAD

To see where master previously pointed, run
eg reflog show master

Outline

1 History Layout

2 Getting Information from git

3 Cleaning Up

4 Multiple Branches, Multiple Repositories
Multiple branches within a project
Direct collaboration

5 Tools and Miscellaneous Tips

Topic Branches

Starting point:

Local repository

A

B

C

origin/master

master HEAD

Topic Branches

$ eg branch experiment

Local repository

A

B

C

origin/master

master HEAD experiment

Topic Branches

After making a commit

Local repository

A

B

C

origin/master

experiment

D master HEAD

Topic Branches

$ eg switch experiment

Local repository

A

B

C

origin/master

experiment

D master

HEAD

Topic Branches

After making a commit

Local repository

A

B

C

origin/master

D master E experiment HEAD

Topic Branches

...and another commit

Local repository

A

B

C

origin/master

D master E

F experiment HEAD

Topic Branches

$ eg branch uber-goo master~2

Local repository

A

B

C

origin/master

D master E

F experiment HEAD

uber-goo

Topic Branches

$ eg switch uber-goo

Local repository

A

B

C

origin/master

D master E

F experiment

uber-goo HEAD

Topic Branches

$ eg branch new-stuff origin/master

Local repository

A

B

C

origin/master

D master E

F experiment

uber-goo HEAD

new-stuff

Direct Collaboration (Remotes)

Initial State:

sierra-trac

A

D master

Jim’s clone

A

D

E master

F bugs

Local clone

A

B

C

master HEAD

origin/master

Direct Collaboration (Remotes)

Initial State:

sierra-trac

A

D master

Jim’s clone

A

D

E master

F bugs

Local clone

A

B

C

master HEAD

origin/master

Direct Collaboration (Remotes)

$ eg remote add jim machine:/PATH...

sierra-trac

A

D master

Jim’s clone

A

D

E master

F bugs

Local clone

A

B

C

master HEAD

origin/master

Direct Collaboration (Remotes)

$ eg fetch jim

sierra-trac

A

D master

Jim’s clone

A

D

E master

F bugs

Local clone

A

B

C

master HEAD

origin/master

D

E

F

jim/master

jim/bugs

Direct Collaboration (Remotes)

$ eg remote rm origin

sierra-trac

A

D master

Jim’s clone

A

D

E master

F bugs

Local clone

A

B

C

master HEAD

D

E

F

jim/master

jim/bugs

Direct Collaboration (Remotes)

$ eg remote rename jim origin

sierra-trac

A

D master

Jim’s clone

A

D

E master

F bugs

Local clone

A

B

C

master HEAD

D

E

F

origin/master

origin/bugs

Direct Collaboration (Remotes)

Use eg remote show or eg info to see remotes.

sierra-trac

A

D master

Jim’s clone

A

D

E master

F bugs

Local clone

A

B

C

master HEAD

D

E

F

origin/master

origin/bugs

Outline

1 History Layout

2 Getting Information from git

3 Cleaning Up

4 Multiple Branches, Multiple Repositories

5 Tools and Miscellaneous Tips
Ignoring files

Ignoring Files

Git provides three mechanisms for ignoring files

.gitignore files – can be checked-in and shared via repository

$GIT_DIR/info/excludes file – local to a project/clone (personal)

core.excludesfile configuration paramter – can be per-project or
global (personal)

Common usage

Setup a ∼/.gitignore file for all your Git projects

$ echo checkin-comments.txt > ∼/.gitignore
$ echo /tests/ >> ∼/.gitignore
$ echo *.bak >> ∼/.gitignore
$ git config --global core.excludesfile ∼/.gitignore

Ignoring Files

Git provides three mechanisms for ignoring files

.gitignore files – can be checked-in and shared via repository

$GIT_DIR/info/excludes file – local to a project/clone (personal)

core.excludesfile configuration paramter – can be per-project or
global (personal)

Common usage

Setup a ∼/.gitignore file for all your Git projects

$ echo checkin-comments.txt > ∼/.gitignore
$ echo /tests/ >> ∼/.gitignore
$ echo *.bak >> ∼/.gitignore
$ git config --global core.excludesfile ∼/.gitignore

Ignoring Files

Git provides three mechanisms for ignoring files

.gitignore files – can be checked-in and shared via repository

$GIT_DIR/info/excludes file – local to a project/clone (personal)

core.excludesfile configuration paramter – can be per-project or
global (personal)

Common usage

Setup a ∼/.gitignore file for all your Git projects

$ echo checkin-comments.txt > ∼/.gitignore
$ echo /tests/ >> ∼/.gitignore
$ echo *.bak >> ∼/.gitignore
$ git config --global core.excludesfile ∼/.gitignore

Stashing Changes

Motivation
You want save off your uncommitted changes to clear out your working
copy but you’re not ready to do a commit.

Sometimes you want to
safely do a pull. . .
switch to another branch to work on something else. . .
experiment with different changes. . .

. . . without making a commit.

Stashing Changes

Motivation
You want save off your uncommitted changes to clear out your working
copy but you’re not ready to do a commit.

Sometimes you want to
safely do a pull. . .
switch to another branch to work on something else. . .
experiment with different changes. . .

. . . without making a commit.

Stashing Changes

Motivation
You want save off your uncommitted changes to clear out your working
copy but you’re not ready to do a commit.

Sometimes you want to
safely do a pull. . .
switch to another branch to work on something else. . .
experiment with different changes. . .

. . . without making a commit.

Stashing Changes

Motivation
You want save off your uncommitted changes to clear out your working
copy but you’re not ready to do a commit.

Sometimes you want to
safely do a pull. . .
switch to another branch to work on something else. . .
experiment with different changes. . .

. . . without making a commit.

Stashing Changes

Motivation
You want save off your uncommitted changes to clear out your working
copy but you’re not ready to do a commit.

Sometimes you want to
safely do a pull. . .
switch to another branch to work on something else. . .
experiment with different changes. . .

. . . without making a commit.

Stashing Changes

$ eg status
(On branch master)
Changes ready to be committed ("staged"):

modified: texmf-paths.sh
Changed but not updated ("unstaged"):

modified: git-sierra-advanced.tex

$ eg stash
Saved working directory and index state "WIP on master: 5395e8a Lead with ./ in the texmf path search."
HEAD is now at 5395e8a Lead with ./ in the texmf path search.
(To restore them type "git stash apply")

$ eg stash list
5395e8a Lead with ./ in the texmf path search.

Stashing Changes

$ eg status
(On branch master)
Changes ready to be committed ("staged"):

modified: texmf-paths.sh
Changed but not updated ("unstaged"):

modified: git-sierra-advanced.tex

$ eg stash
Saved working directory and index state "WIP on master: 5395e8a Lead with ./ in the texmf path search."
HEAD is now at 5395e8a Lead with ./ in the texmf path search.
(To restore them type "git stash apply")

$ eg stash list
5395e8a Lead with ./ in the texmf path search.

Stashing Changes

$ eg status
(On branch master)
Changes ready to be committed ("staged"):

modified: texmf-paths.sh
Changed but not updated ("unstaged"):

modified: git-sierra-advanced.tex

$ eg stash
Saved working directory and index state "WIP on master: 5395e8a Lead with ./ in the texmf path search."
HEAD is now at 5395e8a Lead with ./ in the texmf path search.
(To restore them type "git stash apply")

$ eg stash list
5395e8a Lead with ./ in the texmf path search.

Stashing Changes

$ eg stash pop
On branch master
Your branch is ahead of ’origin/master’ by 1 commit.
#
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout - <file>..." to discard changes in working directory)
#
modified: git-sierra-advanced.tex
modified: texmf-paths.sh
#
no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@0 (3033e15e15e0b4037cbaafbdfdff89ec578aa90f)

Questions?

version: 0.5-56-g5a37-mod

Users of Core Git

For the most part you can replace eg with git in all the commands listed in this
presentation. There are some exceptions:

eg rebase --against . . .
⇒ git rebase . . .

eg diff (no arguments)
⇒ git diff HEAD

eg squash --against . . .
⇒ git reset --soft . . . && git commit

eg reset --working-copy . . .
⇒ git reset --hard . . .

eg switch . . .
⇒ git checkout . . .

If after doing this command translation, you again replace git with eg, the
commands will continue to work in all cases. (eg accepts a superset of the input
that git accepts)

	History Layout
	Global vs. Local
	Sharing Commits
	Pull and autosetuprebase
	Revision Names

	Getting Information from git
	Viewing Changes with gitk
	Viewing Changes with eg diff
	Viewing and Digging for changes with eg log
	Searching for text in files with eg grep

	Cleaning Up
	Rebasing (replaying) sequences of commits
	Squashing commits together
	Amending commits
	Undoing and redoing commits

	Multiple Branches, Multiple Repositories
	Multiple branches within a project
	Direct collaboration

	Tools and Miscellaneous Tips
	Ignoring files

	

