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Abstract

The Trilinos Project is an effort to facilitate the design, development, inte-
gration and ongoing support of mathematical software libraries. In particular,
our goal is to develop parallel solver algorithms and libraries within an object-
oriented software framework for the solution of large-scale, complex multi-
physics engineering and scientific applications. Our emphasis is on developing
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robust, scalable algorithms in a software framework, using abstract interfaces
for flexible interoperability of components while providing a full-featured set of
concrete classes that implement all abstract interfaces.

Trilinos uses a two-level software structure designed around collections of
packages. A Trilinos package is an integral unit usually developed by a small
team of experts in a particular algorithms area such as algebraic precondition-
ers, nonlinear solvers, etc. Packages exist underneath the Trilinos top level,
which provides a common look-and-feel, including configuration, documenta-
tion, licensing, and bug-tracking.

Trilinos packages are primarily written in C++, but provide some C and
Fortran user interface support. We provide an open architecture that allows
easy integration with other solver packages and we deliver our software to the
outside community via the Gnu Lesser General Public License (LGPL) [19].
This report provides an overview of Trilinos, discussing the objectives, history,
current development and future plans of the project.
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Nomenclature
Trilinos The name of the project. Also a Greek term which, loosely translated means

“a string of pearls,” meant to evoke an image that each Trilinos package is a
pearl in its own right, but is even more valuable when combined with other
packages.

Package A self-contained collection of software in Trilinos focused on one primary
class of numerical methods. Also a fundamental, integral unit in the Trilinos
framework.

new package A sample Trilinos package containing all of the infrastructure to install a new
package into the Trilinos framework. Contains the basic directory structure, a
collection of sample configuration and build files and a sample “Hello World”
package. Also a website.

Anasazi An extensible and interoperable framework for large-scale eigenvalue algo-
rithms.The motivation for this framework is to provide a generic interface to a
collection of algorithms for solving large-scale eigenvalue problems.

AztecOO Linear solver package based on preconditioned Krylov methods. A follow-on
to the Aztec solver package [46]. Supports all Aztec interfaces and function-
ality, but also provides significant new functionality.

Belos A Greek term meaning “arrow.” Belos is the next generation of iterative
solvers. Belos solvers are written using “generic” programming techniques.
In other words, Belos is written using TSF abstract interfaces and therefore
has no explicit dependence on any concrete linear algebra library. Instead,
Belos solvers can be used with any concrete linear algebra library that imple-
ments the TSF abstract interfaces.

Ifpack Object-oriented algebraic preconditioner, compatible with Epetra and AztecOO.
Supports construction and use of parallel distributed memory precondition-
ers such as overlapping Schwarz domain decomposition, Jacobi scaling and
local Gauss-Seidel relaxations.

Komplex Complex linear equation solver using equivalent real formulations [10], built
on top of Epetra and AztecOO.

LOCA Library of continuation algorithms. A package of scalable stability analysis
algorithms (available as part of the NOX nonlinear solver package). When
integrated into an application code, LOCA enables the tracking of solution
branches as a function of system parameters and the direct tracking of bifur-
cation points.
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Meros Segregated preconditioning package. Provides scalable block precondition-
ing for problems that couple simultaneous solution variables such as Navier-
Stokes problems.

ML Algebraic multi-level preconditioner package. Provides scalable precondition-
ing capabilities for a variety of problem classes.

NOX A collection of nonlinear solvers, designed to be easily integrated into an
application and used with many different linear solvers.

Petra A Greek term meaning “foundation.” Trilinos has three Petra libraries: Epetra,
Tpetra and Jpetra that provide basic classes for constructing and manipulat-
ing matrix, graph and vector objects. Epetra is the current production version
that is split into two packages, one core and one extensions.

Epetra Current C++ production implementation of the Petra Object Model. The
“E” in Epetra stands for “essential” implying that this version provides
the most important capabilities that are commonly needed by our target
application base. Epetra supports real, double-precision floating point
data only (no single-precision or complex). Epetra avoids explicit use of
some of the more advanced features of C++, including templates and
the Standard Template Library, that can be impediments to portability.

Tpetra The future C++ version of Petra, using templates and other more ad-
vanced features of C++. Tpetra supports arbitrary scalar and ordinal
types, and makes extensive use of advanced C++ features.

Jpetra A Java implementation of Petra, supporting real, double-precision data.
Written in pure Java, it is designed to be byte-code portable and can be
executed across multiple compute nodes.

Teuchos A collection of classes and service software that is useful to almost all Trilinos
packages. Includes reference-counted pointers, parameter lists, templated
interfaces to BLAS, LAPACK and traits for templates.

Thyra A set of interfaces and supporting code that defines basic interoperability
mechanisms between different types of numerical software. The foundation
of all of these interfaces are the mathematical concepts of vectors, vector
spaces, and linear operators. All other interfaces and support software is
built on the basic operator/vector interfaces.

TSF A collection of abstract interfaces that supports application access to a variety
of Trilinos capabilities, supports interoperability betweeen Trilinos packages
and provides future extensibility. TSF is composed of several packages. The
primary user packages are:
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TSFCore Note: Obsolete - see Thyra. TSFCore provides a basic collection of
abstract interfaces to vectors, linear operators, solvers, etc. These in-
terfaces provide a common interface for applications to access one or
more packages that implement the abstract interface. These interfaces
can also be used by other packages in Trilinos to accomplish the same
purpose.

TSFExtended TSFExtended builds on top of Thyra, providing implicit aggregation ca-
pabilities and overloaded operators.

1 Background

A core requirement of many engineering and scientific applications is the need to
solve linear and non-linear systems of equations, eigensystems and other related
problems. Thus it is no surprise that any part of the application that solves these
problems is called a “solver.” The exact definition of what specifically constitutes
a solver depends on many factors. However, a good working definition of a solver
is the following: Any piece of software that finds unknown values for some set of
discrete governing equations in an application. Another characteristic of solvers is
that we can often implement them in such a way that they are “general-purpose”,
so that the details of how the discrete problem was formed are not specifically
needed for the solver to work (although information about problem characteristics
can often be vital to robust solutions.)

General-purpose linear and eigensolvers have been successfully used across a
broad set of applications and computer systems. EISPACK [39], LINPACK [13] and
LAPACK [2] are just a few of the many packages that have made a tremendous im-
pact, providing robust portable solvers to a broad set of applications. More recently
packages such as PETSc [5, 4, 3] and Aztec [46] have provided a large benefit to
applications by giving users access to parallel distributed memory solvers that are
easy-to-use and robust.

Sandia has historically had efforts to develop scalable solver algorithms and soft-
ware. Often this development has been done within the context of a specific appli-
cation code, providing a good robust solver that specifically meets the needs of that
application. Even Aztec, one of the most important general-purpose solvers devel-
oped at Sandia, was developed specifically for MPSalsa [36, 38] and only later
extracted for use with other applications. Unfortunately, even though application-
focused solvers tend to be very robust and can often be made into very effective
general-purpose solvers, the opportunity to re-use the basic set of tools developed
for one solver in the development of another solver becomes very difficult.
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The Trilinos Project grew out of this group of established numerical algorithms ef-
forts at Sandia, motivated by a recognition that a modest degree of coordination
among these efforts could have a large positive impact on the quality and usability
of the software we produce and therefore enhance the research, development and
integration of new solver algorithms into applications. With the advent of Trilinos,
the degree of effort required to develop new parallel solvers has been substan-
tially reduced because our common infrastructure provides an excellent starting
point. Furthermore, many applications are standardizing on the Trilinos matrix and
vector classes. As a result, these applications have access to all Trilinos solver
components without any unnecessary interface modifications.

This document provides an overview of the Trilinos project, focusing on the project
philosophy and description, and providing the reader with a summary of the project
in its current state.

2 Introduction

Research efforts in advanced solution algorithms and parallel solver libraries have
historically had a large impact on engineering and scientific computing. Algorithmic
advances increase the range of tractable problems and reduce the cost of solving
existing problems. Well-designed solver libraries provide a mechanism for leverag-
ing solver development across a broad set of applications and minimize the cost of
solver integration. Emphasis is required in both new algorithms and new software
in order to maximum the impact of our efforts.

The Trilinos project encompasses a variety of efforts that are to some extent self-
contained but at the same time inter-related. The Trilinos design allows individual
packages to grow and mature autonomously to the extent the algorithms and pack-
age developers dictate.

Integration of a package into Trilinos, and what Trilinos can provide to a package,
have multiple possibilities that will be discussed in Section 3. Section 4 discusses
two special collections of Trilinos packages: Petra and TSF. The general definition
of a Trilinos package is presented in Section 6 An overview of current software
research and development is given in Section 7. Finally, this document contains
an appendix, which gives a brief tutorial on object-oriented concepts for readers
who are unfamiliar with the area.
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3 Trilinos Design Philosophy
Each Trilinos package is a self-contained, independent piece of software with its
own set of requirements, its own development team and group of users. Because
of this, Trilinos itself is designed to respect the autonomy of packages. Trilinos
offers a variety of ways for a particular package to interact with other Trilinos pack-
ages. It also offers a set of tools that can assist package developers with builds
across multiple platforms, generating documentation and regression testing across
a set of target platforms. At the same time, what a package must do to be called a
Trilinos package is minimal, and varies with each package. The current collection
of Trilinos packages is shown in Figure 1.

3.1 Services Provided by Trilinos

Trilinos provides a variety of services to a developer wanting to integrate a package
into Trilinos. In particular, the following are provided:

• Configuration management: Autoconf [16], Automake [17] and Libtool [21]
provide a robust, full-featured set of tools for building software across a broad
set of platforms (see also the “Goat Book” [51]). Although these tools are not
official standards, they are commonly used in many packages. Nearly all
existing Trilinos packages use Autoconf and Automake. Libtool support will
be added in future releases.

Package developers who are not currently using autotools, but would like to,
can get a jump start by using a Trilinos package called “new package” (see
below).

Trilinos provides a set of M4 [20] macros that can be used by any other pack-
age that wants to use Autoconf and Automake for configuring and building li-
braries. These macros perform common configuration tasks such as locating
a valid LAPACK [2] library, or checking for a user- defined MPI C compiler.
These macros minimize the amount of redundant effort in using Autotools,
and make it easier to apply a general change to the configure process for all
packages.

• Regression testing: Trilinos provides a variety of regression testing capa-
bilities. Although the test suite is always improving, good coverage testing is
available for the major Trilinos packages. Integrating new tests into Trilinos is
accomplished by creating specially named directories in the CVS repository
and creating scripts that run package tests. These scripts can be executed
manually and are also run as part of the automated regression test harness
(see next item).
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• Automatic Testing: Trilinos Packages that configure and build using Auto-
tools can easily utilize the the Trilinos test harness. On a nightly basis, the
test harness builds the most recent versions of Trilinos libraries and runs any
tests that have been integrated into the testharness.

• Portable interface to BLAS and LAPACK: The Basic Linear Algebra Sub-
programs (BLAS) [26, 15, 14] and LAPACK [2] provide a large repository of
robust, high-performance mathematical software for serial and shared mem-
ory parallel dense linear algebra computations. However, the BLAS and LA-
PACK interfaces are Fortran specifications, and the mechanism for calling
Fortran interfaces from C and C++ varies across computing platforms. Epe-
tra (and Teuchos) provide a set of simple, portable interfaces to the BLAS
and LAPACK that provide uniform access to the BLAS and LAPACK across a
broad set of platforms. These interfaces are accessible to other packages.

• Source code repository and other software process tools: Trilinos source
code is maintained in a CVS [18] repository that is accessible via a secure
connection from anywhere on the internet. It is also browsable via a web-
based interface package called Bonsai [43]. Features and bug reports are
tracked using Bugzilla [44], and email lists are maintained for Trilinos as a
whole and for each package. Support for new packages can easily be added.
All tools are accessible from the main Trilinos website [24].

• Quick-start package infrastructure: Via the new package package in Trili-
nos, a new or existing software project can quickly adopt a variety of useful
software processes and tools. new package provides a starting point for:

– Project organization: Illustrates one way of organizing files for a mathe-
matical software package.

– Autotools: As mentioned above, provides simple working example using
autotools, and a set of M4 macros.

– Automatically generated reference documentation: Shows how to mark
up source code and use Doxygen [48] to produce accurate, extensive
source code documentation.

– Regression testing: Simple regression testing example is part of new package.

– Website: The Trilinos home page [24] contains a new package website
that includes instruction on how to copy and modify the new package
web source for use with a new Trilinos package.

Note:It is worth mentioning that the Trilinos new package package can be
useful independent of Trilinos itself. Like all Trilinos packages, new package
is self-contained, and can be configured and built independently from the rest
of Trilinos. Similarly, the new package website is self-contained and essen-
tially independent from the rest of the Trilinos website.
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4 Petra and TSF: Two Special Package
Collections

In order to understand what Trilinos provides beyond the contributions of each Trili-
nos package, we briefly discuss two special collections of Trilinos packages: Petra
and TSF. These two packages collections are complimentary, with TSF packages
providing common abstract application programmer interfaces (APIs) for other Trili-
nos packages and Petra providing common concrete implementations of basic
classes used by most Trilinos packages. Within the Petra collection of packages,
Epetra is the most mature, portable and widely used package. Within the TSF
collection, Thyra provides a lean set of interfaces and TSFExtended provides a
fuller feature set. TSFExtended builds on top of Thyra, i. e. , TSFExtended classes
inherit from Thyra classes.

4.1 Epetra

Matrices, vectors and graphs are basic objects used in most solver algorithms.
Most Trilinos packages interact with these kinds of objects via abstract interfaces
that allow a package to define what services and behaviors are expected from
the objects, without enforcing a specific implementation. However, in order to use
these packages, some concrete implementation must be selected. Epetra (and
in the future other packages described in Section 7.1) is a collection of concrete
classes that supports the construction and use of vectors, sparse graphs, and
dense and sparse matrices. It provides serial, parallel and distributed memory
capabilities. It uses the BLAS and LAPACK where possible, and as a result has
good performance characteristics.

4.2 Thyra and TSFExtended

Many different algorithms are available to solve a given numerical problem. For
example, there are many algorithms for solving a system of linear equations, and
many solver packages are available to solve linear systems. Which package is
appropriate is a function of many details about the problem being solved and the
platform on which application is being run. However, even though there are many
different solvers, conceptually, from an abstract view, these solvers are providing a
similar capability, and it is advantageous to utilize this abstract view. TSF is a col-
lection of abstract classes that provides an application programmer interface (API)
to perform the most common solver operations. It can provide a single interface
to many different solvers. Furthermore, TSFExtended has powerful compositional

16
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mechanisms that support the light-weight construction of composite objects from
a set of existing objects. As a result, TSF users gain easy access to many solvers
and can bring multiple solvers to bear on a single problem.

5 Common Tools Package: Teuchos
As the number of Trilinos packages grows, we have developed the need for a com-
mon collection of tools that can be leverages across all packages. The Teuchos
package is a relatively recent addition to Trilinos to facilitate collection of the com-
mon tools. In order to retain the autonomy of other Trilinos packages, no package
is required to adopt Teuchos class for internal use. However, a design goal of
Teuchos is robustness and portability such that dependency on Teuchos is not a
practical liability.

Teuchos provides classes and interfaces for:

1. Templated access to BLAS and LAPACK interfaces. Teuchos provides a set
of interfaces that have a single templated parameter for the scalar field. In
cases where the template is of type single, double, complex single or com-
plex double, the user will be linked to standard BLAS and LAPACK functions.
For other data types, we provided generic loops sets for a limited set of key
kernels (NOTE: Generic support for LAPACK functionality is very limited).
For example, if the user specifies a dense matrix-matrix multiply operation,
the standard GEMM BLAS kernel will be called for the four primary scalar
types. For other data types, Teuchos provides a triple nested loop set that
implements the same functionality in terms of the “+” and “*” operators and
uses scalar traits to define zero and one. If the data type that user passed
in supports “operator+” and “operator*” and has a well-defined concept of
zero, identity and magnitude, this type of loop set with compile and execute
correctly. We have used this mechanism to compute basic matrix and vector
calculations using arbitrary precision arithmetic. This capability can be used
to support interval arithmetic, geometric transformation calculations, integers
and calculations with many more data types.

2. Parameter lists: A parameter list is a collection of key-value pairs that can
be used to communicate with a packages. A parameter can be used to tune
how a package is used, or can provide information back to the user from a
package. For example the pair (“Residual Tolerance”, 1.0E-6) could be used
to specify the tolerance that a package should use for convergence testing in
an iterative process. Similarly, the pair (“Residual Norm”, 9.3245E-7) can be
passed back to the user as the actual computed residual norm.

17
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Although a number of packages in Trilinos use their own implementation of
parameter lists internally, all packages will be able to parse Teuchos lists.
This allows users to utilize the same parameter list constructs across multiple
Trilinos packages.

3. Memory management tools: Classes for aiding in correct allocation and dele-
tion of memory. In particular, a reference counting pointer class that allows
multiple references to a single object, deleting the object after the last refer-
ence is removed. These tools are very helpful in reducing the possibility of
memory leaks in a program.

4. Traits: Traits mechanisms [31] are effective techniques for providing detailed
information about supported generic data types. Teuchos provides three
types of traits: ScalarTraits, OrdinalTraits and PacketTraits. ScalarTraits de-
fines a variety of properties for supported scalar types. A partial list of traits
includes:

• zero (one): The appropriate value for zero (one) for the given scalar
type.

• magnitudetype: The data type that would be used by a norm for the
given scalar type. For example, the magnitude type for double and com-
plex double is double.

• random: Function that produces a single random value of the given
scalar type.

• Optional machine parameters: Optionally, a scalar type can also have
machine parameters defined. These parameter have a one-to-one match
with the LAPACK LAMCH parameters. A partial list of these parame-
ters includes machine epsilon, arithmetic base, underflow and overflow.
These parameters are important for robust floating point calculations in
many situations, but proper definitions may not be obvious or essential
for non-standard scalar types.

OrdinalTraits provide information for data types such as int. Again zero and
one are defined, as is a descriptive label. Other ordinal traits are not needed
at this point. PacketTraits is used to define the “size” of a packet type. This
trait allows generic use of data transfer algorithms such as distributed data
communications via MPI.

5. Operation Counts: This class provides mechanisms for tracking and report-
ing operation counts, and associating a counting object with one or more
computational objects.

6. Exception handler: Error reporting class for uniform exception handling.

7. Timers: Uniform interface to wall-clock timers.
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6 Trilinos Package Interoperability
Mechanisms

As mentioned above, what a package must do to be called a Trilinos package is
minimal, and varies with each package. In this section we list the primary mech-
anisms for a package to become part of Trilinos. Note that each mechanism is
an extension or augmentation of package capabilities, creating connections be-
tween packages. Thus, a package does not need to change its internal structure
to become part of Trilinos.

Mechanism 1: Package Accepts User Data as Epetra Objects

All solver packages require some user data (usually in the form of vectors and
matrices) or require the user to supply the action of an operator on a vector. Ac-
cepting this data in the form of Epetra objects is the first Trilinos interoperability
mechanism. Any package that accepts user data this way immediately becomes
accessible to an application that has built its data using Epetra. We expect every
Trilinos package to implement this mechanism in some way. Since Epetra provides
a variety of ways to extract data from an Epetra object, minimally we expect that
a package can at least copy data from the user objects that were built using Epe-
tra. More often, a well-designed package can typically encapsulate Epetra objects
and ask for services from the Epetra objects without explicitly copying them. In the
future, as Tpetra matures (and C++ compilers mature), we expect Tpetra to be a
companion package to Epetra, fulfilling a similar role.

Mechanism 2: Package Callable via TSF Interfaces

TSF provides a set of abstract interfaces that can be used to interface to a variety
of solver packages. TSF can accept pre-constructed solver objects, e.g., precon-
ditioners, iterative solvers, etc., by simple encapsulation or it can construct solver
objects using one of a variety of factories. (See Appendix 8 for the definition of a
factory.) Once constructed, a solver object can be further modified by passing it a
parameter list containing a list of key-value pairs that can control solver behavior
when it is trying to solve a problem. For example, the parameter list could specify
a residual tolerance for an iterative solver.

A package is callable via TSF if it implements one or more of the TSF abstract
class interfaces, making it available to TSF users as one of a suite of possible
solver options.
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Mechanism 3: Package Can Use Epetra Internally

Another interoperability mechanism available to a package is that of using Epetra
objects as the internal objects for storing vector, matrices, etc. that are seldom
or never seen by the user. In many instances, this mechanism has no practical
advantages. However, in some instances, there can be a saving in storage re-
quirements. Furthermore, by using Epetra objects internally, a package can in turn
use other Trilinos packages to manipulate its own internal objects.

Mechanism 4: Package accesses services via TSF interface

TSF provides an abstract solver interface with access to multiple concrete solvers.
A package can access solver services via TSF and therefore be able to use any
solver that implements the TSF interface. By using TSF to access external objects
such vectors, linear operators and solvers, a package has access to any concrete
implementation of the TSF interfaces. This is beneficial for access to a broad set
of concrete classes, and also minimizes the need for additional abstract interfaces
and the corresponding concrete implementations of these additional abstract inter-
faces.

Mechanism 5: Package Builds Under Trilinos configure Scripts

Trilinos uses Autoconf [16] and Automake [17] to build libraries and test suites. The
Trilinos directory structure keeps each Trilinos package completely self-contained.
As such, each package is free to use its own configuration and build process. At
the same time, Trilinos has a top-level configure script that traverses the directory
structure invoking package configure scripts, passing on any parameter definitions
from the top level. Similarly, the make process is also recursive.

A package may easily be automatically built from the top-level Trilinos configuration
and make process by copying and modifying the Autoconf and Automake scripts
from another package. The benefit for doing this is that Autoconf and Automake im-
prove the portability of a package across a broad set of platforms. Also, Automake
provides a rich set of targets for building libraries, software distributions, test suites
and installation processes. If a package adopts the Trilinos configuration and build
process, it will be built automatically along with other Trilinos packages.
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7 Overview of Current Package
Development

7.1 The Petra Object Model

The Petra class libraries provide a foundation for all Trilinos solver development.
Petra provides object classes for constructing and using parallel, distributed mem-
ory matrices and vectors. Petra exists in multiple forms. Its most basic form is as
an object model [23]. As such, it is an abstract description of a variety of vector,
matrix and supporting classes, along with a description of how these classes inter-
act. There are presently three implementations of the Petra Object Model: Epetra,
Tpetra and Jpetra.

Epetra: Essential Implementation of Petra Object Model

Epetra [?] the current production version of Petra, is written for real-valued double-
precision scalar field data only, and restricts itself to a stable core of the C++ lan-
guage standard. As such, Epetra is very portable and stable, and is accessible to
Fortran and C users. Epetra combines in a single package (i) support for generic
parallel machine descriptions, (ii) extensive use of standard numerical libraries, (iii)
use of object-oriented C++ programming and (iv) parallel data redistribution. The
availability of Epetra has facilitated rapid development of numerous applications
and solvers at Sandia because many of the complicated issues of working on a
parallel distributed memory machine are handled by Epetra.

Application developers can use Epetra to construct and manipulate matrices and
vectors, and then pass these objects to most Trilinos solver components. Further-
more, solver developers can develop many new algorithms relying solely on Epetra
classes to handle the intricacies of parallel execution. Epetra also has extensive
parallel data redistribution capabilities, including an interface to the Zoltan load-
balancing library [12]. Epetra is split into two packages: a core package and a set
of extensions.

Tpetra: Templated C++ Implementation of Petra Object Model

In addition to Epetra, we have started development of a templated version of Petra,
called Tpetra, that implements the scalar and ordinal fields as templated types.
When fully developed, Tpetra will allow matrices and vectors to be composed of
real or complex, and single or double precision scalar values. Furthermore, in
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principle, any abstract data type (ADT) can be used as the scalar field type as
long as the ADT supports basic mathematical operations such as addition and
multiplication and inversion. Specifically, we could compute using an interval scalar
field, matrices, integers, etc., without any additional code development in Tpetra.
Tpetra can also use any size integer for indexing. Typically the ordinal field would
be an integral data type such as int or long int. However, any ADT that supports
an indexing capability can be used, including integers in other bases, or cyclic
indexing. Additionally, Tpetra also uses the C++ language standard more fully.
In particular, it utilizes the Standard Template Library (STL) [41], to provide good
algorithmic efficiency with minimal code development.

We are developing Tpetra as a peer library to Epetra. By using partial special-
ization of templates, we are basing Tpetra on established libraries such as the
BLAS [26, 15, 14] and LAPACK [2] and therefore acquire the performance and
robustness of these libraries. Like Epetra, Tpetra is written for generic parallel
distributed memory computers whose nodes are potentially shared memory multi-
processors.

Jpetra: Java Implementation of Petra Object Model

In addition to Tpetra, we are developing a Java implementation of Petra. The pri-
mary design goals of this project are to produce a library that is a high performance,
pure Java implementation of Petra. By restricting ourselves to Java and avoiding
the use of the Java Native Interface (JNI) [42] to link to other libraries, we get the
byte-code portability that Java promises. The fundamental implication of these
goals is that we cannot rely on BLAS [26, 15, 14], LAPACK [2] or MPI [40] since
they are not written in Java, and we do not use the JNI. As such, we must track the
development of pure Java equivalents of these libraries. Several efforts, including
Ninja [30] and MPJ [8], provide equivalent functionality to the BLAS, LAPACK and
MPI, but are completely written in Java.

We will fully implement Jpetra as a peer library to Epetra. By making extensive
use of Java interfaces, we can create loose dependencies on emerging BLAS,
LAPACK and MPI replacements as they become mature and stable. Recently, sev-
eral research efforts [30, 32] have shown that there is no fundamental performance
bottleneck using Java. Instead, Java compilers and user practices have been the
issue. As a result, Java holds much promise as a high performance computing
language. Java also has native graphical user interfaces (GUI) support. A sig-
nificant part of Jpetra will be the development of GUI tools for visualization and
manipulation of Jpetra objects.
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7.2 TSF: The Trilinos Abstract Class Packages

Many different algorithms are available to solve any given numerical problem. For
example, there are many algorithms for solving a system of linear equations, and
many solver packages are available to solve linear systems. Which package is
appropriate is a function of many details about the problem being solved and the
platform on which application is being run. However, even though there are many
different solvers, conceptually, from an abstract view, these solvers are providing a
similar capability, and it is advantageous to utilize this abstract view. TSF is a col-
lection of abstract classes that provides an application programmer interface (API)
to perform the most common solver operations. It can provide a single interface to
many different solvers and has powerful compositional mechanisms that support
the light-weight construction of composite objects from a set of existing objects.
As a result, TSF users gain easy access to many solvers and can bring multiple
solvers to bear on a single problem.

TSF is split into several packages. The most important user-oriented classes are
Thyra and TSFExtended:

1. Thyra: Thyra contains a small set of core classes that are considered essen-
tial to almost any abstract linear algebra interface. The primary user classes
in Thyra are Vector, MultiVector, LinearOp and VectorSpace.

2. TSFExtended: TSFExtended builds on top of Thyra and includes overloaded,
block and composite operators, all of which support powerful abstraction ca-
pabilities. The Meros package relies on TSFExtended to implicitly construct
sophisticated Schur compliment preconditioners in terms of existing compo-
nent operators with little overhead in time or memory.

Both Thyra and TSFExtended are important because they allow interfacing and
sophisticated use of numerical linear algebra objects without requiring the user or
application to commit to any particular concrete linear algebra library. This ap-
proach allows us to leverage the investment in sophisticated abstract numerical
algorithms across many concrete linear algebra libraries and gives application de-
velopers a single API that provides access to many solver packages.

TSF provides abstract interfaces for vector, matrix, operator and solver objects. In
addition, it has powerful aggregation mechanisms that allow existing TSF objects
to be combined in a variety of ways to create new TSF objects. TSF can be useful
in many situations. For example:

1. Generic Krylov method implementation: If a preconditioned Krylov solver is
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implemented using TSF vectors and operators, then any concrete package
that implements the TSF vector and operator interfaces can be used with the
Krylov solver.

2. Generic solver driver: If an application accesses solver services via the TSF
solver interfaces, then any solver that implements the TSF solver interface is
accessible to that application.

3. Aggregate objects to implicitly construct aggregate operators: TSF provides
mechanisms to implicitly construct a matrix of operators, the sum or compo-
sition of two operators, the inverse of an operator, etc. Similar aggregation
mechanisms are available for vectors, matrices and solvers.

7.3 AztecOO: Concrete Preconditioned Iterative
Solvers

AztecOO is an object-oriented follow-on to Aztec [46]. As such, it has all of the
same capabilities as Aztec, but provides a more elegant interface and numerous
functionality extensions. AztecOO specifically solves a linear system AX = B

where A is a linear operator, X is a multivector containing one or more initial
guesses on entry and the corresponding solutions on exit, and B contains the
corresponding right-hand-sides.

AztecOO accepts user matrices and vectors as Epetra objects. The operator A and
any preconditioner, say M ≈ A−1, need not be concrete Epetra objects. Instead,
AztecOO expects A and M to be Epetra Operator or Epetra RowMatrix objects.
Both Epetra Operator and Epetra RowMatrix are pure virtual classes. Therefore,
any other matrix library can be used to supply A and M , as long as that library can
implement the Epetra Operator or Epetra RowMatrix interfaces, something that is
fairly straight-forward for most linear solver libraries.

AztecOO provides scalings, parallel domain decomposition preconditioners, and a
very robust set of Krylov methods. It runs very efficiently on distributed memory
parallel computers or on serial computers. Also, AztecOO implements the Epe-
tra Operator interface. Therefore, an AztecOO solver object can be used as a
preconditioner for another AztecOO object.
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7.4 Belos: Generic Implementation of Krylov
Methods

Belos contains a collection of standard Krylov methods such as conjugate gradi-
ents (CG), GMRES and Bi-CGSTAB. It also contain flexible variants of CG and GM-
RES, and block versions CG and GMRES. The flexible variants allow variable pre-
conditioners to be used, such that the preconditioner at each iteration can change.
Block variants allow the solution of multiple simultaneous right-hand-sides. Block
methods can also be very effective for problems that have just a few small eigen-
values, even if the solution to only a single right-hand-side is needed.

Belos is considered a generic implementation because it relies on TSF interfaces
for access to linear operator, preconditioner and vector objects. Therefore it is not
explicitly tied to any concrete linear algebra library and can in principle be used
with any library that implements the TSF interfaces. In particular, Epetra can be
used since Trilinos provides an Epetra implementation of the TSF interfaces.

7.5 Amesos: Object-oriented Interface to Direct
Solvers

The Amesos package is markedly different than most other Trilinos packages. It is
designed to provide a common interface to a collection of third-party direct sparse
solvers. There are a number of high-quality direct sparse solvers available to the
general public, each of which (i) has a unique interface and (ii) can be especially
suitable for specific uses. Because of this, we provide access to these solvers
through a common interface. Specifically, we provide interfaces to all direct solver
supported by Amesos. These interfaces allow Epetra matrices and vectors to be
used with each third-party solver. At this time, we provide support for SuperLU (se-
rial), SuperLUDist [27], Kundert’s Sparse solver (from Spice [33]),DSCPack [34],
UMFPack [9] and MUMPS [1].

In addition to providing access to third-party solvers, Amesos provides an abstract
base class that facilitates generic use of a third-party solver once a solver object is
instantiated. This abstract interface is implemented by each Amesos direct solver
class. For example, except for the construction phase (which can be accomplished
generically using a “factory” as described in the Appendix), an instance of a solver
object, whether it be a SuperLU solver instance, DSCPack, etc., can be driven via
the the Amesos base solver interface. This interface allows the user to request
computation of a symbolic factorization, numeric factorization and a solve. How a
specific third-party package is used to implement these can vary. The primary pur-
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pose of the Amesos base solver interface is to support efficient reuse of informa-
tion. Specifically, if a sequence of factorizations uses the same nonzero structure
but has different values, the Amesos base solver class can allow efficient reuse of
the structure. Similarly, repeated right-hand-side solves can be done sequentially.
One should note that this fine-grain control does not eliminate simple uses. If the
“solve” method in the Amesos base solver class is called without any previous call
to the numeric factorization, or to neither the symbolic or numeric factorization, the
solver object will be aware of this and perform the necessary preliminary steps for
the call to the solve method to succeed.

7.6 Komplex: Solver Suite for Complex-valued
Linear Systems

Komplex solves complex-valued linear systems using equivalent real-valued formu-
lations of twice the dimension. Given the following complex-valued linear system:

Cw = d, (1)

where C is an m-by-n known complex matrix, d is a known right-hand side and w

is unknown, we can write Equation (1) in its real and imaginary terms,

(A + iB)(x + iy) = b + ic. (2)

Equating the real and imaginary parts of the expanded equation, respectively, gives
rise to four possible 2-by-2 block formulations. We list one of these in Equation (3).

K1 Formulation

(

A −B

B A

) (

x

y

)

=

(

b

c

)

. (3)

Although most preconditioning and iterative methods are generally well-defined
for complex-valued systems, with real-valued systems being a special case, most
widely-available solver packages focus exclusively on real-valued systems or treat
complex-valued systems as an afterthought. Therefore, by transforming the complex-
valued system into a real-valued system, we can immediately leverage all of the in-
vestment in real-valued solvers. KomplexOO constructs an equivalent real-valued
formulation for a given complex-valued linear system and then calls AztecOO to
solve the problem, returning the solution back to the user in a form compatible with
the original complex-valued problem. Details of mathematical and practical issues
of Komplex can be found in Day and Heroux [11].
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7.7 Ifpack: Parallel Algebraic Preconditioners

Ifpack provides local incomplete factorization preconditioners in a parallel domain
decomposition framework. It accepts user data as Epetra RowMatrix objects (in-
cluding Epetra CrsMatrix, Epetra VbrMatrix and Epetra MsrMatrix objects, since
these classes implement the Epetra RowMatrix interface) and can construct a
large variety of ILU preconditioners. Ifpack preconditioners implement the Epe-
tra Operator interface. Therefore, they can be used as preconditioners for AztecOO.
The current released version of Ifpack provides a relaxed ILUK preconditioner and
incomplete Cholesky with threshold dropping.

7.8 ML: Multi-level Preconditioner Package

ML is a multigrid, or more generally, a multi-level preconditioner package for solving
linear systems from partial differential equation (PDE) discretizations. Although
any linear system can be used with ML, problems that have an underlying PDE
nature have the best chance of successful use of ML.

ML provides several approaches to constructing and solving the multi-level prob-
lem:

1. Algebraic smoothed aggregation approach [50, 49]: The matrix graph is col-
ored to create aggregates (groups) of nodes. These aggregates define a
preliminary projection operator. A final projection operator is created by ap-
plying a smoother to the preliminary operator.

2. Algebraic multigrid for Maxwell’s equations: This approach is intended for
preconditioning linear systems of the form Ax = b, where A = S + M , S is
a discrete form of the operator ∇ × ∇ × E, M is a mass matrix, and E is
the electric field. Such systems arise from discretizations of the eddy current
approximations to Maxwell’s equations by either edge elements or Yee-type
schemes [6, 52].

The smoother is a specialized distributed relaxation method [6]. This method
explicitly smooths in range(S), smooths on a projected residual equation in
ker(S), and updates the approximate solution.

The prolongation operator is constructed so that ker(S) is properly repre-
sented on each level. In order for ML to build this prolongator, the user must
provide two additional auxiliary operators: a discrete gradient operator, and
a nodal finite element matrix. Both operators are easy to construct and are
often already available in applications. Further details can be found in [6, 7]:
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3. Adaptive Grid approach: The original grid is used as the coarse grid and the
adaptive refinements determined the fine grid. Prolongation and restriction
operators are determined using simple interpolation and weighted injection.

4. Two-grid approach: A fine and (very) coarse grid are used. Graph and spatial
coordinates are used, but there is no necessary correlation required between
the two grids.

ML has two modes of operation. In the first mode, ML can be run as a stand-alone
solver. ML provides its own smoothers and iterative methods. In the second mode
of operation, ML can also be used as a preconditioner to iterative methods within
Aztec or AztecOO.

ML is quite flexible with regard to matrix formats. ML accepts user matrix data in its
own format. In this case, ML needs two matrix access functions, the first to return
a matrix row and the second to perform a matrix-vector multiply. ML also accepts
Epetra matrix objects. More information is available in either the ML User’s manual
[45] and at the ML website [47].

7.9 Meros

Meros uses the compositional, aggregation and overloaded operator capabilities
of TSF to provide segregated/block preconditioners for linear systems related to
fully-coupled Navier-Stokes problems. This class of preconditioners exploits the
special properties of these problems to segregate the equations and use multi-level
preconditioners on the matrix sub-blocks. The overall performance and scalability
of these preconditioners approaches that of multigrid for certain types of problems.
Although the present target problems are related to computational fluid dynamics,
Meros itself is purely algebraic. Because of this, other types of applications can
potentially use Meros if a similar underlying physics structure is present.

7.10 NOX: Nonlinear Solver Package

NOX provides a suite of nonlinear solver methods that can be easily integrated
into an application. Historically, many applications have called linear solvers as
libraries, but have provided their own nonlinear solver software. NOX can be an
improvement because it provides a much larger collection of nonlinear methods,
and can be easily extended as new nonlinear methods are developed.

NOX currently contains basic solvers such as Newton’s method as well as multi-
ple globalizations including line search and trust region algorithms. Line search
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algorithms include full step, backtracking (interval halving), polynomial (quadratic
and cubic) and More-Thuente. Directions for the backtracking algorithms include
steepest descent, Newton, quasi-Newton, and Broyden.

NOX does not depend on any particular linear algebra package, making it easy to
install. In order to interface to NOX, the user needs to supply methods that derive
from the NOX Vector and Group abstract classes. The Vector interface supports
basic vector operations such as dot products and vector updates. The Group in-
terface supports non-vector linear algebra functionality and contains methods to
evaluate the function and, optionally, the Jacobian. Complete details are provided
on the NOX website [25].

Although users can provide their own Vector and Group implementation, NOX pro-
vides three implementations of its own: LAPACK, Epetra and PETSc. The LAPACK
interface is an interface to the BLAS/LAPACK library. It is not intended for large-
scale computations, but to serve as an easy-to-understand example of how one
might interface to NOX. The Epetra interface is an interface to Epetra. The PETSc
interface is an interface with the PETSc library.

All NOX solvers are in the NOX::Solver namespace. The solvers are accessed
via the NOX::Solver::Manager. The recommended solver is the NOX LineSearch-
Based solver, which is a basic nonlinear solver based on a line search. Each solver
has a number of options that can be specified, as documented in each class or on
the NOX Parameter Reference Page.

The search directions are in the NOX::Direction namespace and accessed via the
NOX::Direction::Manager. The default search direction for a line-search based
method is the Newton direction.

Several line searches are available, as defined in the NOX::LineSearch, and ac-
cessed via the NOX::LineSearch::Manager class.

Convergence or failure of a given solver method is determined by the status tests
defined in the NOX::StatusTest namespace. Various status tests may be combined
via the Combo object. Users are free to create additional status tests that derive
from the Generic status test class.

7.11 LOCA: Library of Continuation Algorithms

LOCA is a package of scalable continuation and bifurcation analysis algorithms.
It is designed as an extension to the NOX nonlinear solver package since the
interfacing requirements are a superset of those needed for nonlinear solution.
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When integrated into an application code, LOCA enables the tracking of solution
branches as a function of system parameters and the direct tracking of bifurcation
points. It also provides an interface to the Anasazi Eigensolver for obtaining lin-
ear stability information. The algorithms are chosen to work with codes that use
Newton’s method to reach steady solutions and to have minimal additional inter-
facing requirements over the nonlinear solver. Furthermore, they are designed for
scalability to large problems, such as those that arise from discretizations of partial
differential equations, and to run on distributed memory parallel machines [37].

LOCA provides robust parameter continuation algorithms with sophisticated step
size controls for tracking steady solutions or bifurcations. There is also an artificial
parameter homotopy algorithm. The approach in LOCA for locating and tracking
bifurcations begins with augmenting the residual equations defining a steady state
with additional equations that describe the bifurcation [35]. This is done generi-
cally. This augmented system is then sent to the NOX library for solution. Instead
of loading up the Jacobian matrix for the entire augmented system (a task that in-
volves second derivatives and dense matrix rows), bordering algorithms are used
to decompose the linear solve into several solves with smaller matrices. Almost all
of the algorithms just require multiple solves of the Jacobian matrix for the steady
state problem to calculate the Newton updates for the augmented system. This
greatly simplifies the implementation, since this is the linear system solve that an
application code using Newton’s method will have invested in. Only the Hopf track-
ing algorithm requires the solution of a larger matrix, which is the complex matrix
involving the Jacobian matrix and an imaginary multiple of the mass matrix. For
this solve the Komplex package is used. Online documentation is available through
the NOX webpage [25].

7.12 Anasazi: Eigensolver package

Anasazi is an extensible and interoperable framework for large-scale eigenvalue al-
gorithms. The goal of this framework is to provide a generic interface to a collection
of algorithms for solving large-scale eigenvalue problems.

Anasazi is interoperable because both the matrix and vectors (defining the eigenspace)
are considered to be opaque objects—only knowledge of the matrix and vectors
via elementary operations is necessary. An implementation of Anasazi is accom-
plished via the use of interfaces. Current interfaces available include Epetra, so
any libraries that understand Epetra matrices and vectors (such as AztecOO) may
also be used in conjunction with Anasazi, and an abstract interface to the LOCA
package.

One of the goals of Anasazi is to allow the user the flexibility to specify the data
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representation for the matrix and vectors and so leverage any existing software
investment. The algorithms that will be initially available through Anasazi are block
implicitly restarted Arnoldi and Lanczos methods and preconditioned eigensolvers.
These include a locally optimal block preconditioned conjugate gradient iteration
(LOBPCG) for symmetric positive definite generalized eigenvalue problems, and a
restarted preconditioned eigensolver for nonsymmetric eigenvalue problems.

7.13 Future Packages

In addition to the package discussed above, we anticipate the inclusion of numer-
ous new packages in the coming months and years. The Trilinos framework offers
an attractive setting for algorithm developers who want a well-supported software
environment and distribution mechanism, as well as the ability use their software
with other packages. Presently we anticipate incorporating PyTrilinos, a Python
interface to selected Trilinos functionality that allows use of the scripting language
Python to drive Trilinos. We also expect that the dense solver developed for, among
other things, the Linpack benchmark will also become a Trilinos package. A code
for performing the nonlinear solution, continuation, and stability analysis of codes
with fixed-point iterations (such as explicit integration codes), based on the recur-
sive Projection Method, is another solver package under development.

To see a complete list of new packages in the future, please look at the online
version of this overview document, available from the Trilinos website [24].

8 Conclusions
The Trilinos project provides a framework for integrating independent solver pack-
ages, making packages inter-operable and providing a common “look-and-feel” for
Trilinos users. Furthermore, Trilinos provides a collection of useful services for
independent solver developers, making integration of a package into Trilinos at-
tractive to developers. The primary advantages that the Trilinos Project provides
are:

1. A common core of basic linear algebra classes: We can minimize redundant
work and jumpstart a new parallel application by utilizing Petra class libraries
to construct and manipulate matrix, graph and vector objects.

2. Extensive use of abstract classes, primarily TSF, to define the interaction
between Trilinos packages: By using abstract interfaces in Trilinos packages,
we are not explicitly dependent on Petra classes for functionality. This allows
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us to use any concrete matrix and vector software with Trilinos packages,
including PETSc, BLAS, and LAPACK.

3. A collection of common software tools and processes: New packages can be
integrated into Trilinos very easily. Furthermore, if a package does not have
its own well-developed set of software engineering tools and processes, the
Trilinos design makes it easy for a package to incorporate Autotools, bug and
feature tracking, source code control and mail lists.

4. A one-to-many API for applications: Application developers who adopt the
TSF abstract interfaces gain access to many solvers via a single mechanism.
Furthermore, additional third party solvers are easily added as necessary.

5. Solver aggregation capabilities: Via the TSF aggregation capabilities, it is
possible to combine many solvers and bring them to bear on a single prob-
lem.
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A Brief Overview of Some Object-Oriented
Concepts

Much of the discussion in this document assumes some familiarity with object-
oriented concepts and terminology. We realize that some readers may not be very
familiar with these topics. Therefore, we provide this appendix to cover some of
the basic topics, as we understand them and use them.

Object-oriented Programming

We use the term object-oriented programming (OOP) to refer to a philosophy of
software engineering where procedures (called methods or functions) and data
that are logically related are kept together in a single logical unit called a class.
Although it is not always clear which data and methods belong in a given class, we
can generally agree on basic associations. As an example, one obvious class for a
solver framework is a Vector. For our purposes, we consider a vector object to have
finite dimension and a basis. Therefore, it contains data that can be indexed. Some
obvious vector operations are norms, dot products and vector updates. Vectors can
also be multiplied by a linear operator, or more specifically by a matrix. However,
we commonly put this kind of method in the matrix class because matrices tend to
be more complicated objects and writing the method in the matrix class is easier.

Some of the strengths of OOP are a strong emphasis on the interaction of objects
with each other, that is, on interfaces between classes. By focusing on interfaces
we get a variety of benefits. First, a well-designed interface prescribes what should
be done by a piece of software, not how it should be done. This fact, combined
with the fact that a class owns its data, allows great flexibility in how methods are
implemented. Even more importantly, once software is in use, OOP techniques
give us flexibility to change the implementation of a class without changing the
interface. Since a user only works with the interface (methods) of a class, we can
change the implementation of a class without requiring any major change in the
user code.

We have used this flexibility within the Trilinos Project. In particular, earlier versions
of Petra classes were based on code from Aztec, which allowed us to get working
versions of Petra very quickly. Over time we replace the Aztec code with imple-
mentations that offered more flexibility and features. However, the overall design
of many of the Petra classes has remained fundamentally the same.
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Some Key OOP Terms

Throughout this paper we have used a number of terms repeatedly, and sometimes
interchangeably. In this section, we define these terms. Note that these terms (and
many more) are discussed in great detail in books by Stroustrup [41], Gamma et.
al. [22], Meyers [28, 29] and many others.

Virtual Function, Pure Virtual Function

Virtual functions (also called virtual methods) are functions defined on a base class
that can be redefined in any derived class. When a derived class redefines a
method from its base class, it is said to override that method. A pure virtual function
is a virtual function that is declared but not implemented in the base class. Pure
virtual functions must be overridden by derived classes, while “non-pure” virtual
functions need not be overridden.

Abstract Class, Pure Virtual Class, Interface, Virtual Class

These four terms are used to describe classes that are incomplete, and can not
be constructed directly. The first term is used to describe any class that has one
or more pure virtual methods. The second two terms describe classes that have
no executable code. These classes contain method prototypes only and cannot
be constructed explicitly. The term pure virtual class tends to be associated with
C++ programming while interface is formally defined in Java. We tend to use these
two terms interchangeably. A virtual class, like an abstract class, is one which
has some pure virtual methods (prototypes without code), but has some methods
that have a default implementation (sometimes these implementations are written
in terms of other virtual methods). These classes cannot be constructed explicitly
either. All four of these class types must be inherited by a concrete class that
implements the virtual methods, therefore implementing the interface.

Concrete Class, Implementation

In order for an abstract class to be used, some other class must provide an imple-
mentation of the undeveloped methods of the abstract class. This implementation
class, often called a concrete class, provides an implementation of the abstract
class interface. Generally the term concrete class can be used to describe any
class that can be constructed, i.e., any class which contains no pure virtual meth-
ods.
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Base Class, Derived Class, Specialization

A concrete class that implements an abstract class is said to be a derived class
while the abstract class is called a base class. Unrelated to abstract and concrete
classes, we also mention another form of derived class called specialization. One
class is a specialization of another (base) class if it is a subset (or special case) of
the base class. For example, given an existing matrix class, a vector class can be
derived by constructing a matrix object with one column. In other cases a derived
class extends the base class, providing methods from the base class as well as
methods not in the base class.

Base Class, Polymorphism, Factory

An abstract class, and in fact any class containing virtual methods, can be im-
plemented by multiple concrete classes. In this situation each concrete class can
be used interchangeably to behave as an instance of the base class. This inter-
changeability of the concrete classes that implement a common base is referred to
as polymorphism. For convenience, and to hide the details of concrete class con-
struction, we often develop a function or class called a factory that can construct
one of a number of concrete classes that have a common base class. Once an
instance of the concrete class is constructed, the object is returned as an object of
the base class type. In this way, the calling code (the scope in which the object is
to be used) need not know what the concrete type of the object actually is.

Multiple Inheritance

Multiple inheritance describes the case where a single concrete class inherits more
than one base class. This feature of the C++ language is utilized by several classes
in the Epetra package. For example, Epetra CrsMatrix is a concrete compressed
row sparse matrix class that implements the abstract interface Epetra RowMatrix
as well as Epetra DistObject, the interface specification for import and export op-
erations in distributed-memory parallel environments. An instance of a class that
implements multiple base classes may be passed as an argument where any of
those base classes is expected.

Templates, Traits

C++ classes (and stand-alone functions) may be written in terms of one or more
generic type parameters. Such classes are called templates. An example could be
a matrix class that may be instantiated with any type of coefficient data – double-
precision floating-point numbers, integers, etc. In a templated class, the imple-
mentation code doesn’t know the type of the template parameter. In many cases
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this is a severe limitation, for instance if a templated vector class is to call through
to BLAS functions it is necessary to distinguish between calling ’dnrm2’, ’snrm2’
or ’dznrm2’. Another example is the need to associate different MPI data-types
with template parameters. This limitation can be addressed using a template tech-
nique called traits [31]. Traits are essentially a way of associating a set of types
and methods with the specific type used to instantiate the template. This is accom-
plished by using a secondary template which has a specialization for each possible
type that is to be supported. This secondary template is only used internally, and
is not exposed to the end user.
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