
SAND REPORT
SAND2004-3268
Unlimited Release
Printed June 2004

Teuchos::RefCountPtr Beginner’s Guide

An Introduction to the Trilinos Smart
Reference-Counted Pointer Class for
(Almost) Automatic Dynamic Memory

Management in C++

Roscoe A. Bartlett
Optimization and Uncertainty Estimation

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

ITED

STATES OF AM

ER
IC

A

SAND2004-3268
Unlimited Release
Printed June 2004

Teuchos::RefCountPtr Beginner’s Guide
An Introduction to the Trilinos Smart Reference-Counted
Pointer Class for (Almost) Automatic Dynamic Memory

Management in C++

Roscoe A. Bartlett
Optimization and Uncertainty Estimation

Sandia National Laboratories∗, Albuquerque NM 87185 USA,

Abstract

Dynamic memory management in C++ is one of the most common areas of difficulty and er-
rors for amateur and expert C++ developers alike. The improper use of operator new and opera-
tor delete is arguably the most common cause of incorrect program behavior and segmentation
faults in C++ programs. Here we introduce a templated concrete C++ class Teuchos::Ref-
CountPtr<>, which is part of the Trilinos tools package Teuchos, that combines the concepts
of smart pointers and reference counting to build a low-overhead but effective tool for sim-
plifying dynamic memory management in C++. We discuss why the use of raw pointers for
memory management, managed through explicit calls to operator new and operator delete, is
so difficult to accomplish without making mistakes and how programs that use raw pointers for
memory management can easily be modified to use RefCountPtr<>. In addition, explicit calls
to operator delete is fragile and results in memory leaks in the presents of C++ exceptions. In
its most basic usage, RefCountPtr<> automatically determines when operator delete should
be called to free an object allocated with operator new and is not fragile in the presents of excep-
tions. The class also supports more sophisticated use cases as well. This document describes
just the most basic usage of RefCountPtr<> to allow developers to get started using it right
away. However, more detailed information on the design and advanced features of RefCount-
Ptr<> is provided by the companion document “Teuchos::RefCountPtr : The Trilinos Smart
Reference-Counted Pointer Class for (Almost) Automatic Dynamic Memory Management in
C++” [2].

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

3

Acknowledgments

The author would like to thank Carl Laird, Heidi Thornquist, Mike Heroux and Marzio Sala for
comments on earlier drafts of this document.

The format of this report is based on information found in [5].

4

Contents

1 Introduction . 7
2 An example C++ program. 9

2.1 Example C++ program using raw dynamic memory management 9
2.2 Refactored example C++ program using RefCountPtr<> . 12

3 Additional and advanced features of RefCountPtr<> . 14
4 Summary . 15
References . 17

Appendix

A C++ declarations for RefCountPtr<> . 19
B RefCountPtr<> quick-start and reference . 21
C Commandments for the use of RefCountPtr<> . 25
D Recommendations for passing objects to and from C++ functions . 27
E Listing: Example C++ program using raw dynamic memory management 29
F Listing: Refactored example C++ program using RefCountPtr<> . 31

5

6

Teuchos::RefCountPtr
Beginner’s Guide

An Introduction to the Trilinos Smart
Reference-Counted Pointer Class for

(Almost) Automatic Dynamic Memory
Management in C++

1 Introduction

The main purpose of this document is to provide a quick-start guide on how to incorporate the
reference-counting smart pointer class Teuchos::RefCountPtr<> into C++ programs that use dy-
namic memory allocation and object orientation. This code is included in the Trilinos [4] tools
package Teuchos. The design of Teuchos::RefCountPtr<> is based partly on the interface for
std::auto ptr<> and Items 28 and 29 in ”More Effective C++” [6]. In short, RefCountPtr<>
allows one client to dynamically create an object (using operator new for instance), pass the object
around to other clients that need to access the object and never require any client to explicitly call
operator delete. The object will (almost magically) be deleted when all of the clients remove their
references to the object. In principle, this is very similar to the type of garbage collection that is
in languages like Perl and Java. There are some pathological cases (such as the classic problem of
circular references, see [6, Item 29, page 212]) where RefCountPtr<> will result in a memory leak,
but these situations can be avoided through the careful use of RefCountPtr<>. However, realizing
the potential of hands-off garbage collection with RefCountPtr<> requires following some rules.
These rules are partially spelled out in the form of commandments in Appendix C.

Note that direct calls to operator delete are discouraged in modern C++ programs that are
designed to be robust in the presence of C++ exception handing. This is because the raw use of
operator delete often results in memory leaks when exceptions are thrown. For example, in the
code fragment:

void someFunction() {
A *a = new A;
a->f();
delete a;

}

if an exception is thrown in the function call a->f() then the statement delete a will never be

7

executed and a memory leak will have been created. The class std::auto ptr<> was added to the
standard C++ library (see [6, Items 9 and 10]) to protect against these types of memory leaks. For
example, the rewritten function:

void someFunction() {
std::auto_ptr<A> a(new A);
a->f();

}

is robust in the event of exceptions and no memory leak will occur. However, std::auto ptr<>
can not be used to share a resource between two or more clients and therefore is not an answer to
the issue of general garbage collection. The class RefCountPtr<> not only is robust in the event
of exceptions but also implements reference counting and is therefore more general (but admittedly
more complex and expensive) than std::auto ptr<>.

The use of RefCountPtr<> is critically important in the development and maintenance of large
complex object-oriented programs composed of many separately-developed pieces (such as Trili-
nos). This discussion assumes that the reader has a basic familiarity and some programming experi-
ence with C++ and has at least been exposed to the basic concepts of object-oriented programming
(good sources include [3] and [7]). Furthermore, the reader should be comfortable with the use of
C++ pointers and references.

The appendices contain basic reference material for RefCountPtr<>. In many respects, the
appendices are the most important contribution of this document. For those readers that like to
see the C++ declarations right away, Appendix A contains the C++ declarations for the template
class RefCountPtr<> and some important associated non-member templated functions. Appendix
B is a short reference-card-like quick-start for the use of RefCountPtr<>. The quick-start in this
appendix shows how to create RefCountPtr<> objects from raw C++ pointers, how to represent dif-
ferent forms on constantness, cast from one pointer type to another, access the underlying reference-
counted object as well as to associate and manage extra data. Appendix C gives some command-
ments for the use of RefCountPtr<> and reinforces the material in Appendix B. Appendix D gives
tables of recommended idioms for how to pass raw C++ objects and RefCountPtr<>-wrapped ob-
jects to and from functions. More detailed discussions of all of the material in the appendices is
contained in the design document for RefCountPtr<> [2]. Appendix E gives a listing for an ex-
ample program that uses raw pointer variables and direct calls to operator new and operator delete
while Appendix F shows a refactoring of this example program to use RefCountPtr<>.

Note! Anxious readers are encouraged to jump directly to Appendix E and F to get an idea
of what RefCountPtr<> is all about. This example, together with the reference material in the
appendices, should be enough for semi-experienced C++ developers to start using RefCountPtr<>
right away.

For less anxious readers, in the following section, we describe why the use of raw C++ pointers
and raw calls to operator new and especially operator delete is difficult to program correctly in even

8

moderately complex C++ programs. We then discuss the different ways C++ pointers are used in
such programs and describe how to refactor these programs to replace some of the raw C++ pointers
and raw calls to operator delete with RefCountPtr<>. In the following discussion we will define
persisting and non-persisting associations and will make a distinction between them (see page 11).
RefCountPtr<> is recommended for use only with persisting associations. The consistent use of
RefCountPtr<> extends the vocabulary of C++ in helping to distinguish between these two types of
relationships. In addition, RefCountPtr<> is designed for the memory management of individual
objects, not raw C++ arrays of objects. Array allocation and deallocation should be performed
using standard C++ containers such as std::vector<>, std::valarray<> or some other such
convenient C++ array class. However, it is quite common to dynamically allocate arrays of Ref-
CountPtr<> objects and use RefCountPtr<> to manage the lifetime of such array class objects.

2 An example C++ program

The use of object-oriented (OO) programing in C++ is the major motivation for the development
of RefCountPtr<>. OO programs are characterized by the use of abstract classes (i.e. interfaces)
and concrete subclasses (i.e. implementations). In OO programs it is common that the selection
of which concrete subclass(es) to use is not known until runtime. The “Abstract Factory” [3] is
a popular design pattern that allows the flexible runtime selection of what concrete subclasses to
create.

Below we describe a fictitious program that demonstrates some of the typical features of an OO
program that uses dynamic memory management in C++. In this simple program, handling memory
management using raw C++ pointers and calls to operator new and operator delete will appear
fairly easy but larger more realistic OO programs are much more complicated and it is definitely not
easy to do memory management without some help.

2.1 Example C++ program using raw dynamic memory management

One of the predominate features of this example program is the use of the following abstract inter-
face base class UtilityBase that defines an interface to provide some useful capability.

class UtilityBase {
public:

virtual void f() const = 0;
};

In our example program, UtilityBase will have two subclasses where one or the other will be
used at runtime.

9

class UtilityA : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityA::f() called, this="<<this<<"\n"; }
};

class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this="<<this<<"\n"; }
};

In this example program the above implementation functions just print to standard out.

Some of the clients in this program have to create UtilityBase objects without knowing ex-
actly what concrete subclasses are being used. This is accomplished through the use of the “Abstract
Factory” design pattern [3]. For UtilityBase, the abstract factory looks like

class UtilityBaseFactory {
public:

virtual UtilityBase* createUtility() const = 0;
};

and has the following factory subclasses for creating UtilityA and UtilityB objects.

class UtilityAFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityA(); }
};

class UtilityBFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityB(); }
};

Now let’s assume that our example program has the following client classes.

// Simple client with no state
class ClientA {
public:

void f(const UtilityBase &utility) const { utility.f(); }
};

// Client that maintains a pointer to a Utility object
class ClientB {

10

UtilityBase *utility_;
public:

ClientB() : utility_(0) {}
˜ClientB() { delete utility_; }
void initialize(UtilityBase *utility) { utility_ = utility; }
void g(const ClientA &a) { a.f(*utility_); }

};

// Client that maintains pointers to UtilityFactory and Utility objects
class ClientC {

const UtilityBaseFactory *utilityFactory_;
UtilityBase *utility_;
bool shareUtility_;

public:
ClientC(const UtilityBaseFactory *utilityFactory, bool shareUtility)
:utilityFactory_(utilityFactory)
,utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

˜ClientC() { delete utilityFactory_; delete utility_; }
void h(ClientB *b) {
if(shareUtility_) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility());

}
};

The type of logic used in ClientC for determining when new objects should be created or when
objects should be reused and passed around is common in larger more complicated OO programs.

The above client classes demonstrate two different types of associations between objects: non-
persisting and persisting.

Non-Persisting associations exist only within a single function call and do not extend after the
function has finished executing. For example, objects of type ClientA and UtilityBase have
a non-persisting relationship through the function ClientA::f(const UtilityBase &utility).
Likewise, objects of type ClientB and ClientA have a non-persisting association through the func-
tion ClientB::g(const ClientA &a).

Persisting associations are where a relationship between two objects exists past a single function
call. The most typical kind of persisting association in an OO C++ program is where one object
maintains a private pointer data member to another object. For example, persisting associations
exist between a ClientC object, a UtilityBaseFactory and a UtilityBase object through the
the private C++ pointer data members ClientC::utilityFactory and ClientC::utility re-
spectively. Likewise, a persisting association exists between a ClientB object and a UtilityBase
object through the private pointer data member ClientB::utility .

Persisting relationships are significantly more complex than non-persisting relationships since

11

a persisting relationship usually implies that some objects must be responsible for the lifetime of
other objects. This is never the case in a non-persisting relationship as defined above.

Appendix E shows an example program that uses all of the C++ classes described above. The
program in Appendix E has several memory management problems. An astute reader will notice
that the UtilityBaseFactory created in main() gets deleted twice; once in the destructor for
the ClientC object c and again at the end of main() in an explicit call to operator delete. This
problem could be fixed in this program by arbitrating “ownership” of the UtilityBaseFactory
object to either main() or the ClientC object, but not both which is the case in Appendix E.

A more difficult memory management problem to catch and fix occurs in the ClientB and
ClientC objects regrading a shared UtilityBase object. When shareUtility is set to false
(by the user in the commandline arguments) the objects b1, b2 and c each own a pointer to differ-
ent UtilityBase objects and the software will correctly delete each dynamically allocated object
using one and only one call to operator delete (in the destructors of these classes). However,
when shareUtility is to set to true the objects b1, b2 and c will contain pointers to the same
UtilityBase object and operator delete will be called on this shared UtilityBase object multi-
ple times when b1, b2 and c are destroyed. In this case, it is not so easy to arbitrate ownership of
the shared UtilityBase object to the ClientB or the ClientC objects. Logic could be developed
in this simple program to insure that ownership was assigned properly but such logic would enlarge
the program, complicate maintenance, and would ultimately make the software components less
reusable. In more complex programs, trying to dynamically arbitrate ownership at run time is much
more difficult and error prone if done manually.

2.2 Refactored example C++ program using RefCountPtr<>

Now we describe how RefCountPtr<> can be used to greatly simplify dynamic memory manage-
ment in these types of OO programs. Appendix F shows the refactoring of the program in Appendix
E to use RefCountPtr<> for all persisting relationships. In general, refactoring software that uses
raw C++ pointers to use RefCountPtr<> is as simple as replacing the type T* with RefCount-
Ptr<T>, where T is nearly any class or built-in data type.

The first persisting relationship for which RefCountPtr<> is used is the relationship between
a UtilityBaseFactory object and a client that uses it. The refactoring changes the return type
of UtilityBaseFactory::createUtility() from a raw UtilityBase* pointer to a RefCount-
Ptr<UtilityBase> object. The new “Abstract Factory” class declarations (assuming that the sym-
bols from the Teuchos namespace are in scope so that explicit Teuchos:: qualification is not
necessary) become

class UtilityBaseFactory {
public:

virtual RefCountPtr<UtilityBase> createUtility() const = 0;

12

};

class UtilityAFactory : public UtilityBaseFactory {
public:

RefCountPtr<UtilityBase> createUtility() const { return rcp(new UtilityA()); }
};

class UtilityBFactory : public UtilityBaseFactory {
public:

RefCountPtr<UtilityBase> createUtility() const { return rcp(new UtilityB()); }
};

In addition to the change of the return type, the refactoring also requires that calls to operator
new be wrapped in calls to the templated function Teuchos::rcp(...).

The refactoring shown in Appendix F does not impact the definition of the class ClientA since
this class does not have any persisting relationships with any other objects. However, the definitions
of the classes ClientB and ClientC do change and become

class ClientB {
RefCountPtr<UtilityBase> utility_;

public:
void initialize(const RefCountPtr<UtilityBase> &utility) { utility_=utility; }
void g(const ClientA &a) { a.f(*utility_); }

};

class ClientC {
RefCountPtr<UtilityBaseFactory> utilityFactory_;
RefCountPtr<UtilityBase> utility_;
bool shareUtility_;

public:
ClientC(const RefCountPtr<UtilityBaseFactory> &utilityFactory, bool shareUtility)
:utilityFactory_(utilityFactory)
,utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

void h(ClientB *b) {
if(shareUtility_) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility());

}
};

The first thing that one should notice about the refactored ClientB and ClientC classes is that
their destructors are gone. It turns out that the compiler-generated destructors do exactly the correct
thing (i.e. call the destructor on the RefCountPtr<> data members which in turns calls operator
delete on the underlying reference-counted object when the reference count goes to zero). The

13

second thing that one should notice is that the old default constructor ClientB::ClientB() which
initialized the raw C++ pointer utility to null is no longer needed since RefCountPtr<> has a
default constructor that does that. A third thing to notice about these refactored client classes is that
the RefCountPtr<> objects are passed by const reference (see Appendix D) and not by value as
the corresponding raw pointers where in the original unfactored classes. Passing RefCountPtr<>
objects by const reference yields slightly more efficient code and simplifies stepping through the
code in a debugger. For example, a function declared as

void someFunction(RefCountPtr<A> a);

will always result in the copy constructor for RefCountPtr<> being called (and therefore stepped
into in a debugger) while this same function declared as:

void someFunction(const RefCountPtr<A> &a);

will often not require the copy constructor be called (except in cases where an implicit conversion
is being performed as described in Appendix B) and thereby easing debugging.

As an aside, note that Appendix D gives recommended idioms for how to pass raw C++ ob-
jects and RefCountPtr<>-wrapped objects to and from functions in a way that result in function
prototypes becoming as self documenting as possible, help to avoid coding errors and increase the
readability of C++ code. Also, in addition to the benefit that RefCountPtr<> eases dynamic mem-
ory management, the selective use of RefCountPtr<> and raw C++ object references extends the
vocabulary of the C++ language by helping to distinguish between persisting and non-persisting
associations. For example, when a one sees a function prototype where an object is passed through
a RefCountPtr<> such as

class SomeClass {
public:

void someFunction(const RefCountPtr<A> &a);
}

one can automatically deduce that “memory” of the A object will be retained (through a private
RefCountPtr<A> data member in SomeClass no doubt) and that should automatically alter how
the developer plans on calling that function and passing the A object. The refactored C++ program
in Appendix F provides an example of how the idioms presented in Appendix D are put to use.

3 Additional and advanced features of RefCountPtr<>

The use cases for RefCountPtr<> described above comprise a large majority of the relavent use
cases in most programs, but there there are some other use cases that require additional and more

14

advanced features. Some of these additional features (the C++ declarations for which are shown in
Appendix A) are mentioned below:

1. Casting

RefCountPtr<> objects can be casted in a manner similar to casting raw C++ pointers and the
same types of conversion rules apply. Analogs of the built-in casts static cast<>, const -
cast<> and dynamic cast<> are supported by the non-member templated functions rcp -
static cast<>, rcp const cast<> and rcp dynamic cast<> respectively. See Appendix
B for examples of how they are used.

2. Reference-count information

The function RefCountPtr<>::count() returns the number of RefCountPtr<> objects that
point to the underlying reference-counted object. This information can be useful in some
cases.

3. Associating extra data with a reference-counted object

There are some more difficult use cases where certain types of information or other objects
must be bundled with a reference-counted object and must not be deleted until the reference-
counted object is deleted. The non-member templated functions set extra data<>(...)
and get extra data<>(...) serve this purpose (see item (5) in Appendix B).

4. Customized deallocation policies

The default behavior of RefCountPtr<> is to call operator delete on reference-counted
objects once the reference count goes to zero. While this is the most commonly needed
behavior, there are use cases where more specialized dellocation polices are required. For
these cases, there is an overloaded form of the templated function Teuchos::rcp(...) that
takes a templated deallocation policy object that defines how a reference-counted object is
deallocated when required.

These features are discussed in detail in the design document [2].

4 Summary

The templated C++ class RefCountPtr<> provides a low-overhead option for (almost) automatic
memory management in C++. This class has been developed and refined over many years and has
been instrumental in improving the quality of software projects that use it consistently (for example
see MOOCHO [1]). Careful use of RefCountPtr<> eliminates the need to manually call operator
delete when dynamically allocated objects are no longer needed. Furthermore, it helps to reduce
the amount of code that developers have to write. For example, most classes that use RefCount-
Ptr<> for dynamically allocated memory do not need developer-supplied destructors. This because

15

the compiler-generated destructors do the exactly correct thing which is to call destructors on an
object’s constituent data members. This was demonstrated in the difference between the original
and refactored classes ClientB and ClientC described in Sections 2.1 and 2.2.

The class RefCountPtr<> also has advanced features not found in other smart-pointer imple-
mentations such as the ability to attach extra data and the customization of the deallocation policy.

16

References

[1] R. A. Bartlett. MOOCHO : Multifunctional Object-Oriented arCHitecture for Optimization,
User’s Guide. Sandia National Labs, 2003.

[2] Roscoe A. Bartlett. Teuchos::RefCountPtr : The Trilinos smart reference-counted pointer class
for (almost) automatic dynamic memory management in C++. Technical Report In preparation,
Sandia National Laboratories, 2004.

[3] E. Gamma, R. Helm, R. Johnson, and John Vlissides. Design Patterns: Elements fo Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[4] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu, Tamara Kolda,
Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps, Andrew Salinger, Heidi Thorn-
quist, Ray Tuminaro, James Willenbring, and Alan Williams. An Overview of Trilinos. Tech-
nical Report SAND2003-2927, Sandia National Laboratories, 2003.

[5] Tamara K. Locke. Guide to preparing SAND reports. Technical report SAND98-0730, Sandia
National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550,
May 1998.

[6] S. Meyers. More Effective C++. Addison-Wesley, 1996.

[7] B. Stroustrup. The C++ Programming Language, special edition. Addison-Wesley, New York,
2000.

17

18

A C++ declarations for RefCountPtr<>

namespace Teuchos {

enum ENull { null };

enum EPrePostDestruction { PRE_DESTROY, POST_DESTROY };

template<class T>
class DeallocDelete { public: void free(T* ptr) { if(ptr) delete ptr; } };

template<class T>
class DeallocArrayDelete { public: void free(T* ptr) { if(ptr) delete [] ptr; } };

template<class T>
class RefCountPtr {
public:

typedef T element_type;
RefCountPtr(ENull null_arg = null);
RefCountPtr(const RefCountPtr<T>& r_ptr);
template<class T2> RefCountPtr(const RefCountPtr<T2>& r_ptr);
˜RefCountPtr();
RefCountPtr<T>& operator=(const RefCountPtr<T>& r_ptr);
T* operator->() const;
T& operator*() const;
T* get() const;
T* release();
int count() const;
void set_has_ownership();
bool has_ownership() const;
bool shares_resource(const RefCountPtr<T>& r_ptr) const;

private:
...

};

template<class T> RefCountPtr<T> rcp(T* p);
template<class T> RefCountPtr<T> rcp(T* p, bool owns_mem);
template<class T

,class Dealloc_T> RefCountPtr<T> rcp(T* p, Dealloc_T dealloc, bool owns_mem);
template<class T2, class T1> RefCountPtr<T2> rcp_implicit_cast(const RefCountPtr<T1>& p1);
template<class T2, class T1> RefCountPtr<T2> rcp_static_cast(const RefCountPtr<T1>& p1);
template<class T2, class T1> RefCountPtr<T2> rcp_const_cast(const RefCountPtr<T1>& p1);
template<class T2, class T1> RefCountPtr<T2> rcp_dynamic_cast(const RefCountPtr<T1>& p1

,bool throw_on_fail = false);
template<class T1, class T2> int set_extra_data(const T1 &extra_data

,const std::string& name, RefCountPtr<T2> *p
,bool force_unique = true
,EPrePostDestruction destroy_when = POST_DESTROY);

template<class T1, class T2> T1& get_extra_data(RefCountPtr<T2>& p
,const std::string& name);

template<class T1, class T2> const T1& get_extra_data(const RefCountPtr<T2>& p
,const std::string& name);

template<class Dealloc_T
, class T> Dealloc_T& get_dealloc(RefCountPtr<T>& p);

template<class Dealloc_T
, class T> const Dealloc_T& get_dealloc(const RefCountPtr<T>& p);

}

19

20

B RefCountPtr<> quick-start and reference

This appendix presents a short, but fairly comprehensive, quick-start for the use of RefCountPtr<>.
The use cases described here should cover the overwhelming majority of the use instances of Ref-
CountPtr<> in a typical program.

The following class hierarchy will be used in the C++ examples given below.

class A { public: virtual ˜A(){} A& operator=(const A&){} virtual void f(){} };
class B1 : virtual public A {};
class B2 : virtual public A {};
class C : virtual public B1, virtual public B2 {};

class D {};
class E : public D {};

All of the following code examples used in this appendix are assumed to be in the names-
pace Teuchos or have appropriate using Teuchos::... declarations. This removes the need to
explicitly use Teuchos:: to qualify classes, functions and other declarations from the Teuchos
namespace. Note that some of the runtime checks are denoted as “debug runtime checked” which
means that checking will only be performed in a debug build (that is one where the macro DEBUG
is defined at compile time).

1. Creation of RefCountPtr<> objects

(a) Creating a RefCountPtr<> object using new

RefCountPtr<C> c_ptr = rcp(new C);

(b) Creating a RefCountPtr<> object to an array allocated using new[n]

RefCountPtr<C> c_ptr = rcp(new C[n],DeallocArrayDelete<C>(),true);

(c) Initializing a RefCountPtr<> object to NULL

RefCountPtr<C> c_ptr;

or

RefCountPtr<C> c_ptr = null;

(d) Initializing a RefCountPtr<> object to an object not allocated with new

C c;
RefCountPtr<C> c_ptr = rcp(&c,false);

(e) Representing constantness and non-constantness
i. Non-constant pointer to non-constant object

21

RefCountPtr<C> c_ptr;

ii. Constant pointer to non-constant object
const RefCountPtr<C> c_ptr;

iii. Non-Constant pointer to constant object
RefCountPtr<const C> c_ptr;

iv. Constant pointer to constant object
const RefCountPtr<const C> c_ptr;

(f) Copy constructor (implicit casting)

RefCountPtr<C> c_ptr = rcp(new C); // No cast
RefCountPtr<A> a_ptr = c_ptr; // Cast to base class
RefCountPtr<const A> ca_ptr = a_ptr; // Cast from non-const to const

2. Reinitialization of RefCountPtr<> objects (using assignment operator)

(a) Resetting from a raw pointer

RefCountPtr<A> a_ptr;
a_ptr = rcp(new C());

(b) Resetting to null

RefCountPtr<A> a_ptr = rcp(new C());
a_ptr = null; // The C object will be deleted here

(c) Assigning from a RefCountPtr<> object

RefCountPtr<A> a_ptr1;
RefCountPtr<A> a_ptr2 = rcp(new C());
a_ptr1 = a_ptr2; // Now a_ptr1 and a_ptr2 point to same C object

3. Accessing the reference-counted object

(a) Access to object reference (debug runtime checked)

C &c_ref = *c_ptr;

(b) Access to object pointer (unchecked, may return NULL)

C *c_rptr = c_ptr.get();

(c) Access to object pointer (debug runtime checked, will not return NULL)

C *c_rptr = &*c_ptr;

(d) Access of object’s member (debug runtime checked)

c_ptr->f();

4. Casting

(a) Implicit casting (see copy constructor above)
(b) Casting away const

22

RefCountPtr<const A> ca_ptr = rcp(new C);
RefCountPtr<A> a_ptr = rcp_const_cast<A>(ca_ptr); // cast away const!

(c) Static cast (no runtime check)

RefCountPtr<D> d_ptr = rcp(new E);
RefCountPtr<E> e_ptr = rcp_static_cast<E>(d_ptr); // Unchecked, unsafe?

(d) Dynamic cast (runtime checked, failed cast allowed)

RefCountPtr<A> a_ptr = rcp(new C);
RefCountPtr<B1> b1_ptr = rcp_dynamic_cast<B1>(a_ptr); // Checked, safe!
RefCountPtr<B2> b2_ptr = rcp_dynamic_cast<B2>(b1_ptr); // Checked, safe!
RefCountPtr<C> c_ptr = rcp_dynamic_cast<C>(b2_ptr); // Checked, safe!

(e) Dynamic cast (runtime checked, failed cast not allowed)

RefCountPtr<A> a_ptr1 = rcp(new C);
RefCountPtr<A> a_ptr2 = rcp(new A);
RefCountPtr<B1> b1_ptr1 = rcp_dynamic_cast<B1>(a_ptr1,true); // Success!
RefCountPtr<B1> b1_ptr2 = rcp_dynamic_cast<B1>(a_ptr2,true); // Throw std::bad_cast!

5. Managing extra data

(a) Adding extra data (post destruction of extra data)

set_extra_data(rcp(new B1),"A:B1",&a_ptr);

(b) Adding extra data (pre destruction of extra data)

set_extra_data(rcp(new B1),"A:B1",&a_ptr,PRE_DESTORY);

(c) Retrieving extra data

get_extra_data<RefCountPtr<B1> >(a_ptr,"A:B1")->f();

(d) Resetting extra data

get_extra_data<RefCountPtr<B1> >(a_ptr,"A:B1") = rcp(new C);

23

24

C Commandments for the use of RefCountPtr<>

Here are listed commandments for the use of RefCountPtr<>. These commandments reinforce
some of the material in the quick-start in Appendix B. The reasoning behind these commandments
can be found in the design document for RefCountPtr<> [2]. Along with each commandment is
one or more anti-commandments stating the negative of the commandment. C++ code fragments
are also included to demonstrate each commandment and anti-commandment.

Commandment 1 Thou shall put a pointer for an object allocated with operator new into a Ref-
CountPtr<> object only once. The best way to insure this is to call operator new directly in a call
to rcp(...) to create a dynamically allocated object that is to be managed by a RefCount-
Ptr<> object. See item (1a) in Appendix B.

Anti-Commandment 1 Thou shall never give a raw C++ pointer returned from operator new to
more than one RefCountPtr<> object.

Example:

A *ra_ptr = new C;
RefCountPtr<A> a_ptr1 = rcp(ra_ptr); // Okay
RefCountPtr<A> a_ptr2 = rcp(ra_ptr); // no, No, NO !!!!

Commandment 2 Thou shall only pass in a raw C++ pointer created from new[] using rcp(new
C[n],DeallocArrayDelete<C)(),true). See item (1b) in Appendix B.

Anti-Commandment 2 Thou shall never give a raw C++ pointer to an array of objects returned
from operator new[] to a RefCountPtr<> object using rcp(new C[n]).

Example:

RefCountPtr<std::vector<C> > c_array_ptr1 = rcp(new std::vector<C>(N)); // Okay
RefCountPtr<C> c_array_ptr2 = rcp(new C[N]

,DeallocArrayDelete<C>()
,true); // Okay

RefCountPtr<C> c_array_ptr3 = rcp(new C[N]); // no, No, NO!

Commandment 3 Thou shall only create a NULL RefCountPtr<> object by using the default
constructor or by using the null enum (and its associated special constructor) (see item (1c) in
Appendix B). Trying to assign to NULL or 0 will not compile.

25

Anti-Commandment 3 Thou shall not create a NULL RefCountPtr<> object using the tem-
plated function rcp(...) since it is very verbose and complicates maintenance.

Example:

RefCountPtr<A> a_ptr1 = null; // Yes :-)
RefCountPtr<A> a_ptr2 = rcp<A>(NULL); // No, too verbose :-(

Commandment 4 Thou shall only pass a raw pointer for an object that is not allocated by op-
erator new (e.g. allocated on the stack) into a RefCountPtr<> object by using the templated
function rcp<T>(T* p, bool owns mem) and setting owns mem to false (see item (1d)
in Appendix B).

Anti-Commandment 4 Thou shall never pass a pointer for an object not allocated with operator
new into a RefCountPtr<> object without setting owns mem to false.

Example:

C c;
RefCountPtr<A> a_ptr1 = rcp(&c,false); // Yes :-)
RefCountPtr<A> a_ptr2 = rcp(&c); // no, No, NO !!!!

Commandment 5 Thou shalt only cast between RefCountPtr<> objects using the default copy
constructor (for implicit conversions) and the nonmember template functions rcp static cast<>(-
...), rcp const cast<>(...) and rcp dynamic cast<>(...) (see item (4) in Ap-
pendix B).

Anti-Commandment 5 Thou shall never convert between RefCountPtr<> objects using raw
pointer access.

Example:

RefCountPtr<A> a_ptr = rcp(new C);
RefCountPtr<B1> b1_ptr1 = rcp_dynamic_cast<B1>(a_ptr); // Yes :-)
RefCountPtr<B1> b1_ptr2 = rcp(dynamic_cast<B1*>(a_ptr.get())); // no, No, NO !!!

26

D Recommendations for passing objects to and from C++ functions

Below are recommended idioms for passing required1 and optional2 arguments into and out of C++
functions for various use cases and different types of objects. These idioms show how to write
function arguments prototypes which exploit the C++ language in a way that makes these function
prototypes as self documenting as possible, avoid coding errors and increase readability of C++
code. In general, RefCountPtr<> objects should be passed and manipulated as though they where
raw C++ pointers. The main difference is that while raw C++ pointer objects should generally
be passed by value, RefCountPtr<> objects should generally be passed by reference for several
reasons (see [2] for more details).

Argument purpose Non-Persisting Persisting

non-mutable object (required1)

.

S s
or

const S s
or

const S &s
.

const RefCountPtr<const S> &s

non-mutable object (optional2) const S *s const RefCountPtr<const S> &s
mutable object S *s const RefCountPtr<S> &s

array of non-mutable objects const S s[] const RefCountPtr<const S> s[]
array of mutable objects S s[] const RefCountPtr<S> s[]

C++ declarations for passing small concrete (i.e. with value semantics) objects to and from
functions where S is a place holder for an actual built-in or user-defined data type.

Argument purpose Non-Persisting Persisting
non-mutable object (required1) const A &a const RefCountPtr<const A> &a
non-mutable object (optional2) const A *a const RefCountPtr<const A> &a

mutable object A *a const RefCountPtr<A> &a
array of non-mutable objects const A* a[] const RefCountPtr<const A> a[]

array of mutable objects A* a[] const RefCountPtr<A> a[]

C++ declarations for passing abstract (i.e. with reference or pointer semantics) or large concrete
objects to and from functions where A is a place holder for an actual abstract C++ base class.

1Required arguments must be bound to valid objects (i.e. can not be NULL)
2Optional arguments may be NULL in some cases

27

28

E Listing: Example C++ program using raw dynamic memory man-
agement

#include "example_get_args.hpp"

// Abstract interfaces
class UtilityBase {
public:

virtual void f() const = 0;
};
class UtilityBaseFactory {
public:

virtual UtilityBase* createUtility() const = 0;
};

// Concrete implementations
class UtilityA : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityA::f() called, this="<<this<<"\n"; }
};
class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this="<<this<<"\n"; }
};
class UtilityAFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityA(); }
};
class UtilityBFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityB(); }
};

// Client classes
class ClientA {
public:

void f(const UtilityBase &utility) const { utility.f(); }
};
class ClientB {

UtilityBase *utility_;
public:

ClientB() : utility_(0) {}
˜ClientB() { delete utility_; }
void initialize(UtilityBase *utility) { utility_ = utility; }
void g(const ClientA &a) { a.f(*utility_); }

};
class ClientC {

29

const UtilityBaseFactory *utilityFactory_;
UtilityBase *utility_;
bool shareUtility_;

public:
ClientC(const UtilityBaseFactory *utilityFactory, bool shareUtility)
:utilityFactory_(utilityFactory)
,utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

˜ClientC() { delete utilityFactory_; delete utility_; }
void h(ClientB *b) {
if(shareUtility_) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility());

}
};

// Main program
int main(int argc, char* argv[])
{

// Read options from the commandline
bool useA, shareUtility;
example_get_args(argc,argv,&useA,&shareUtility);
// Create factory
UtilityBaseFactory *utilityFactory = 0;
if(useA) utilityFactory = new UtilityAFactory();
else utilityFactory = new UtilityBFactory();
// Create cleints
ClientA a;
ClientB b1, b2;
ClientC c(utilityFactory,shareUtility);
// Do some stuff
c.h(&b1);
c.h(&b2);
b1.g(a);
b2.g(a);
// Cleanup memory
delete utilityFactory;

}

30

F Listing: Refactored example C++ program using RefCountPtr<>

#include "Teuchos_RefCountPtr.hpp"
#include "example_get_args.hpp"

// Inject symbols for RefCountPtr so we don’t need Teuchos:: qualification
using Teuchos::RefCountPtr;
using Teuchos::rcp;

// Abstract interfaces
class UtilityBase {
public:

virtual void f() const = 0;
};
class UtilityBaseFactory {
public:

virtual RefCountPtr<UtilityBase> createUtility() const = 0;
};

// Concrete implementations
class UtilityA : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityA::f() called, this="<<this<<"\n"; }
};
class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this="<<this<<"\n"; }
};
class UtilityAFactory : public UtilityBaseFactory {
public:

RefCountPtr<UtilityBase> createUtility() const { return rcp(new UtilityA()); }
};
class UtilityBFactory : public UtilityBaseFactory {
public:

RefCountPtr<UtilityBase> createUtility() const { return rcp(new UtilityB()); }
};

// Client classes
class ClientA {
public:

void f(const UtilityBase &utility) const { utility.f(); }
};
class ClientB {

RefCountPtr<UtilityBase> utility_;
public:

void initialize(const RefCountPtr<UtilityBase> &utility) { utility_=utility; }
void g(const ClientA &a) { a.f(*utility_); }

31

};
class ClientC {

RefCountPtr<UtilityBaseFactory> utilityFactory_;
RefCountPtr<UtilityBase> utility_;
bool shareUtility_;

public:
ClientC(const RefCountPtr<UtilityBaseFactory> &utilityFactory, bool shareUtility)
:utilityFactory_(utilityFactory)
,utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

void h(ClientB *b) {
if(shareUtility_) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility());

}
};

// Main program
int main(int argc, char* argv[])
{

// Read options from the commandline
bool useA, shareUtility;
example_get_args(argc,argv,&useA,&shareUtility);
// Create factory
RefCountPtr<UtilityBaseFactory> utilityFactory;
if(useA) utilityFactory = rcp(new UtilityAFactory());
else utilityFactory = rcp(new UtilityBFactory());
// Create cleints
ClientA a;
ClientB b1, b2;
ClientC c(utilityFactory,shareUtility);
// Do some stuff
c.h(&b1);
c.h(&b2);
b1.g(a);
b2.g(a);

}

32

DISTRIBUTION:

1 Carl Laird
Department Chemical Engineering
Carnegie Mellon University
5000 Forms Ave.
Pittsburgh, PA 15213

1 Matthias Heinkenschloss
Department of Computational and Ap-
plied Mathematics
MS 134 Rice University
6100 S. Main Street
Houston, TX 77005-1892

1 Bill Symes
Department of Computational and Ap-
plied Mathematics
MS 134 Rice University
6100 S. Main Street
Houston, TX 77005-1892

1 Tony Padula
Department of Computational and Ap-
plied Mathematics
MS 134 Rice University
6100 S. Main Street
Houston, TX 77005-1892

1 Mark Gockenbach
Department of Mathematical Sciences
Michigan Technological University
1400 Townsend Drive
Houghton, Michigan 49931-1295, U.S.A.

1 Paul Sexton
Box 1560
St. John’s University
Collegeville, MN 56321

1 MS 0370
Scott Mitchell, 9211

1 MS 0370
David Gay, 9211

5 MS 0370
Roscoe Bartlett, 9211

1 MS 0370
Scott Collis, 9211

1 MS 0370
Bart van Bloemen Waanders,
9211

1 MS 0370
Mike Eldred, 9211

1 MS 0370
Laura Swiler, 9211

1 MS 9159
Mark Adams, 9214

1 MS 1110
Pavel Bochev, 9214

1 MS 1110
Todd Coffey, 9214

1 MS 1110
David Day, 9214

1 MS 1110
John Delaurentis, 9214

1 MS 1110
Michael Heroux, 9214

1 MS 1110
Ulrich Hetmaniuk, 9214

1 MS 9217
Jonathan Hu, 9214

1 MS 1110
Richard Lehoucq, 9214

1 MS 1110
Louis Romero, 9214

1 MS 1110
David Ropp, 9214

33

1 MS 1110
Mazio Sala, 9214

1 MS 1110
Kendall Stanley, 9214

1 MS 1110
Heidi Thornquist, 9214

1 MS 9217
Raymond Tuminaro, 9214

1 MS 1110
James Willenbring, 9214

1 MS 1110
William Hart, 9215

1 MS 1110
Erik Boman, 9215

1 MS 9159
Paul Boggs, 8962

1 MS 9159
Kevin Long, 8962

1 MS 9159
Patricia Hough, 8962

1 MS 9159
Tamara Kolda, 8962

1 MS 9159
Monica Martinez-Canales, 8962

1 MS 9159
Pamela Williams, 8962

1 MS 9159
Victoria Howle, 8962

1 MS 0316
Eric Keiter, 9233

1 MS 0316
Scott Hutchinson, 9233

1 MS 0316
Robert Hoekstra, 9233

1 MS 0316
Curt Ober, 9233

1 MS 0316
Tom Smith, 9233

1 MS 0316
Russel Hooper, 9233

1 MS 0382
Carter Edwards, 9143

1 MS 0382
James Stewart, 9143

1 MS 0316
Alan Williams, 9143

1 MS 0617
Ricard Drake, 9231

1 MS 0316
Roger Pawlowski, 9233

1 MS 0316
Eric Phipps, 9233

1 MS 1110
Andrew Salinger, 9233

1 MS 1110
Brett Bader, 9233

1 MS 0316
Gary Hennigan, 9233

1 MS 9018
Central Technical Files, 8945-1

2 MS 0899
Technical Library, 9610

2 MS 0612
Review & Approval Desk, 4916

34

