
SAND REPORT
SAND2003-1898
Unlimited Release
August 2003

Trilinos Developers Guide

Michael A. Heroux, James M. Willenbring and Robert Heaphy

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1110

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
IC

A

SAND2003-1898

Unlimited Release

August 2003

Trilinos Developers Guide

Michael A. Heroux James M. Willenbring
Computational Math and Algorithms Department

Robert Heaphy
Discrete Algorithms and Math Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1110

Abstract

The Trilinos Project is an effort to facilitate the design, development, inte-
gration and ongoing support of mathematical software libraries. A new soft-
ware capability is introduced into Trilinos as a package. A Trilinos package is
an integral unit usually developed by a small team of experts in a particular
algorithms area such as algebraic preconditioners, nonlinear solvers, etc.

The Trilinos Developers Guide is a resource for new and existing Trilinos
package developers. Topics covered include how to configure and build Trili-
nos, what is required to integrate an existing package into Trilinos and exam-
ples of how those requirements can be met, as well as what tools and services
are available to Trilinos packages. Also discussed are some common practices
that are followed by many Trilinos package developers. Finally, a snapshot of
current Trilinos packages and their interoperability status is provided.

3

TrilinosTM Developers Guide

Acknowledgments
The authors would like to acknowledge the support of the ASCI and LDRD pro-
grams that funded development of Trilinos and recognize all Trilinos contributors:
Teri Barth, Ross Bartlett, David Day, Robert Hoekstra, Jonathan Hu, Tammy Kolda,
Richard Lehoucq, Kevin Long, Eric Phipps, Roger Pawlowski, Andrew Rothfuss,
Andrew Salinger, Paul Sery, Ken Stanley, Heidi Thornquist, Ray Tuminaro and
Alan Williams.

4

CONTENTS TrilinosTM Developers Guide

Contents
1 Introduction . 9

1.1 How To Use This Guide . 9
1.2 Typographical Conventions . 11

2 Getting Started. 11
2.1 Obtaining a Copy of Trilinos . 11
2.2 Recommended Build Directory Structure . 12
2.3 Configuring Trilinos . 14
2.4 Trilinos Configuration Options . 17
2.5 Building Trilinos . 20
2.6 Tips for Making the Configure and Build Processes More Efficient . . . 20
2.7 Adding and Removing Source Files . 22

3 Services Available to Trilinos Packages . 26
3.1 Configuration Management . 26
3.2 Regression Testing . 27
3.3 Test Harness . 27
3.4 CVS Repository . 28
3.5 Bonsai . 28
3.6 Bugzilla . 29
3.7 Mailman . 29
3.8 Package Website Template . 31
3.9 Portable Interface to BLAS and LAPACK . 31

4 Trilinos Package Requirements. 31
4.1 Add Package to Trilinos Repository . 32
4.2 Port Package to All Supported Platforms . 33
4.3 Respond to All Relevant Configure Options . 33
4.4 Respond to Issue Reports in a Timely Manner 33

5 Suggested Software Engineering Practices . 34
5.1 Preliminary Steps . 34
5.2 Practices to Support the Software Lifecycle . 35
5.3 Requirements . 36
5.4 Specification/Design . 36
5.5 Implementation . 36
5.6 Integration . 37
5.7 Maintenance . 37
5.8 Retirement/Replacement . 38

6 Petra and TSF: Two Special Package Collections 39

5

TrilinosTM Developers Guide TABLES

6.1 Petra . 39
6.2 TSF . 40

7 Integrating a Package into Trilinos . 40
7.1 Improving Portability . 44

8 Interoperability Status for Existing Trilinos Packages 44

References. 47

Appendix

A Commonly Used CVS Commands . 49

B The Trilinos Release Process . 53

C Creating a New Trilinos (Release) Branch with CVS 55

Figures
1 Current collection of Trilinos Packages . 10
2 Recommended Layout for Trilinos Build Directories 13
3 Current Trilinos Package Dependencies . 45

Tables
1 Typographical Conventions for This Document. 11
2 Trilinos Package Requirements and Suggested Practices. 32
3 Useful Terminology for Section 7. 41

6

TABLES TrilinosTM Developers Guide

Trilinos The name of the project. Also a Greek term which, loosely translated means
“a string of pearls,” meant to evoke an image that each Trilinos package is a
pearl in its own right, but is even more valuable when combined with other
packages.

Package A self-contained collection of software in Trilinos focused on one primary
class of numerical methods. Also a fundamental, integral unit in the Trilinos
framework.

new package A sample Trilinos package containing all of the infrastructure to install a new
package into the Trilinos framework. Contains the basic directory structure, a
collection of sample configuration and build files and a sample “Hello World”
package. Also a website.

Anasazi An extensible and interoperable framework for large-scale eigenvalue algo-
rithms.The motivation for this framework is to provide a generic interface to a
collection of algorithms for solving large-scale eigenvalue problems.

AztecOO Linear solver package based on preconditioned Krylov methods. A follow-on
to the Aztec solver package [19]. Supports all Aztec interfaces and function-
ality, but also provides significant new functionality.

Belos A Greek term meaning “arrow.” Belos is the next generation of iterative
solvers. Belos solvers are written using “generic” programming techniques.
In other words, Belos is written using TSF abstract interfaces and therefore
has no explicit dependence on any concrete linear algebra library. Instead,
Belos solvers can be used with any concrete linear algebra library that imple-
ments the TSF abstract interfaces.

Ifpack Object-oriented algebraic preconditioner, compatible with Epetra and AztecOO.
Supports construction and use of parallel distributed memory precondition-
ers such as overlapping Schwarz domain decomposition, Jacobi scaling and
local Gauss-Seidel relaxations.

Komplex Complex linear equation solver using equivalent real formulations [4], built on
top of Epetra and AztecOO.

LOCA Library of continuation algorithms. A package of scalable stability analysis
algorithms (available as part of the NOX nonlinear solver package). When
integrated into an application code, LOCA enables the tracking of solution
branches as a function of system parameters and the direct tracking of bifur-
cation points.

Meros Segregated preconditioning package. Provides scalable block precondition-
ing for problems that couple simultaneous solution variables such as Navier-
Stokes problems.

7

TrilinosTM Developers Guide TABLES

ML Algebraic multi-level preconditioner package. Provides scalable precondition-
ing capabilities for a variety of problem classes.

NOX A collection of nonlinear solvers, designed to be easily integrated into an
application and used with many different linear solvers.

Petra A Greek term meaning “foundation.” Trilinos has three Petra libraries: Epetra,
Tpetra and Jpetra that provide basic classes for constructing and manipulat-
ing matrix, graph and vector objects. Epetra is the current production version
that is split into two packages, one core and one extensions.

Epetra Current C++ production implementation of the Petra Object Model. The
“E” in Epetra stands for “essential” implying that this version provides
the most important capabilities that are commonly needed by our target
application base. Epetra supports real, double-precision floating point
data only (no single-precision or complex). Epetra avoids explicit use of
some of the more advanced features of C++, including templates and
the Standard Template Library, that can be impediments to portability.

Tpetra The future C++ version of Petra, using templates and other more ad-
vanced features of C++. Tpetra supports arbitrary scalar and ordinal
types, and makes extensive use of advanced C++ features.

Jpetra A Java implementation of Petra, supporting real, double-precision data.
Written in pure Java, it is designed to be byte-code portable and can be
executed across multiple compute nodes.

Teuchos A collection of classes and service software that is useful to almost all Trilinos
packages. Includes reference-counted pointers, parameter lists, templated
interfaces to BLAS, LAPACK and traits for templates.

TSF A collection of abstract interfaces that supports application access to a variety
of Trilinos capabilities, supports interoperability betweeen Trilinos packages
and provides future extensibility. TSF is composed of several packages. The
primary user packages are:

TSFCore TSFCore provides a basic collection of abstract interfaces to vectors,
linear operators, solvers, etc. These interfaces provide a common inter-
face for applications to access one or more packages that implement the
abstract interface. These interfaces can also be used by other packages
in Trilinos to accomplish the same purpose.

TSFExtended TSFExtended builds on top of TSFCore, providing implicit aggregation
capabilities and overloaded operators.

8

1 Introduction TrilinosTM Developers Guide

1 Introduction
The Trilinos Project is an effort to facilitate the design, development, integration and
ongoing support of mathematical software libraries. Trilinos provides a framework
and set of tools for document and source code control, software issue tracking,
developer and user communication, automatic testing, portable configuration and
building, and software distribution. Trilinos also provides a set of core utility libraries
that provide common vector, graph and matrix capabilities, as well as a common
abstract interface for applications to access any appropriate Trilinos package.

A new software capability is introduced into Trilinos as a package. A Trilinos pack-
age is an integral unit usually developed by a small team of experts in a particular
algorithms area such as algebraic preconditioners, nonlinear solvers, etc.

The overall objective of Trilinos is to promote rapid development and deployment
of high-quality, state-of-the-art mathematical software in an environment that sup-
ports interoperability of packages while preserving package independence. The
Trilinos design allows individual packages to grow and mature autonomously to
the extent the algorithms and package developers dictate.

The Trilinos Developers Guide is meant to assist new and existing Trilinos package
developers. Topics covered include how to configure and build Trilinos, what is
required to integrate an existing package into Trilinos and examples of how those
requirements can be met, as well as what tools and services are available to Trili-
nos packages. Also discussed are some common practices that are followed by
many Trilinos package developers. Finally, a snapshot of current Trilinos packages
and their interoperability status is provided, along with a list of supported computer
platforms.

For a higher-level view of the Trilinos project, please see An Overview of Trili-
nos [14]. The current set of packages in Trilinos is shown in Figure 1.

1.1 How To Use This Guide

Although all sections of this guide will be useful to most developers, it is worth
mentioning that this guide supports three types of development activities:

1. New Project: Development of a new package using little or no existing soft-
ware as a base. All sections of this guide are appropriate reading.

2. Integration of existing third-party software: In this case, existing software is

9

Trilin
o

s
T

M
D

evelopers
G

uide
TA

B
L

E
S

Basic Linear Algebra Libraries

Abstract Interfaces and Adaptors

"New Package"

Nonlinear Solvers

Linear SolversPreconditioners

Time Integration

Eigensolvers

Common Services

Primary Trilinos Packages
7/22/2003 - v9

Epetra: Current Production C++ Library
Epetra Core

Epetra Extensions

Tpetra: Next Generation C++ Library

Jpetra: Java Library
TSFCore: Basic Abstract classes

TSF Extensions: Aggregate/composite,
overloaded operators

TSF Utilities: Core utility classes

"Hello World": Package Template to aid
integration of new packages

Web site with layout and instructions

NOX: Collection of nonlinear solvers

LOCA: Library of Continuation Algorithms

Amesos: OO Interfaces to 3rd party direct
solvers

SuperLU

KundertSparse

SuperLUDist

DSCPack

UMFPack

MUMPS

AztecOO: Preconditioned Krylov Package
based on Aztec

Komplex: Complex solver via equivalent real
formulations

Belos: Next generation Krylov and block
Krylov solvers

ML: Multi-level preconditioners

Meros: Segregated/Block Preconditioners

IFPACK: Algebraic preconditioners

TOX: Planned development

Anasazi: Collection of eigensolvers

Teuchos: Parameter Lists, BLAS Interfaces,
etc

F
ig

u
re

1.
C

urrentcollection
ofTrilinos

P
ackages

10

1.2 Typographical Conventions TrilinosTM Developers Guide

being imported into the Trilinos framework. Section 7 is particularly important,
as are Sections 3, 4 and 6.

3. Ongoing development: For existing Trilinos package developers, Sections 3
and 4 are designed as a reference for software engineering practices and
policies for Trilinos development.

1.2 Typographical Conventions

Our typographical conventions are found in Table 1.

Notation Example Description
Verbatim text ../configure --enable-mpi Commands, directory and file name ex-

amples, and other text associated with
text displayed in a computer terminal win-
dow.

CAPITALIZED TEXT CXXFLAGS Environment variables used to configure
how tools such as compilers behave.

<text in angle brackets> ../configure <user parameters> Optional parameters.

Table 1. Typographical Conventions for This Document.

2 Getting Started
This chapter covers some of the basics that a developer will need to know when
beginning to work on the Trilinos project. We address how to obtain, configure and
build Trilinos, as well as how to add files to an existing package.

Tip: Check out the Trilinos Developer Home Page at
http://software.sandia.gov/Trilinos/developer .

2.1 Obtaining a Copy of Trilinos

Trilinos can be obtained in two different ways. Developers should obtain a copy
of Trilinos via the Trilinos CVS repository. To access the repository, an account
on software.sandia.gov is required. In addition, the user account must be a in the
“trilinos” and “cvs” groups on software.sandia.gov. To request an account, send a
note to trilinos-help@software.sandia.gov . The following two environment
variables must be set to access the repository:

11

TrilinosTM Developers Guide TABLES

Command: CVSROOT :ext:your user name@software.sandia.gov:/space/CVS

Command: CVS RSH ssh

(Replace “your user name” with your user name on software.sandia.gov.)

To checkout a working copy of the development branch of Trilinos in the current
directory, type

Command: cvs checkout Trilinos

To checkout a working copy of only one package of Trilinos in the current directory,
type

Command: cvs checkout <package name>

(Replace “package name” with the name of the package.)

For those not familiar with CVS, a brief discussion covering some of the most
common CVS commands is available in Section A. For a more complete listing of
CVS commands, see the GNU CVS Home Page [10].

Trilinos can also be obtained in the form of a tarball from the Trilinos website at
http://software.sandia.gov/trilinos/downloads.html .

2.2 Recommended Build Directory Structure

Via Autoconf and Automake the Trilinos configuration facilities provide a great deal
of flexibility for configuring and building the existing Trilinos packages. However,
unless a user has prior experience with Autotools, we recommend the following
process to build and maintain local builds of Trilinos.

To start, we defined two useful terms:

• Source tree - The directory structure where source files are found. A source
tree is obtained by expanding a distribution tar ball, or by checking out a copy
of the Trilinos repository.

• Build tree - The directory structure where object and library files, as well as
executables are located.

12

2.2 Recommended Build Directory Structure TrilinosTM Developers Guide

Trilinos/

Main Trilinos directory

SOLARIS_SERIAL/ LINUX_MPI/ configure packages/ �

From this directory

execute:
../configure

from Solaris platform to

create Solaris serial build

In this directory execute:
../configure �-with-mpi-compilers

from Linux platform to create

Linux MPI build

Other Trilinos files
and directories.

Location of all Trilinos

packages. Each package
directory is self-contained.

Trilinos configure script that

constructs build trees when

run on target platform.

Figure 2. Recommended Layout for Trilinos Build Directo-
ries

Although it is possible to run ./configure from
the source tree (in the directory where the config-
ure file is located), we recommend separate build
trees. The greatest advantage to having a sepa-
rate build tree is that multiple builds of the libraries
can be maintained from the same source tree.
For example, both serial and parallel libraries can
be built. This approach also eliminates problems
with configuring in a ’dirty’ directory (one that has
already been configured in).

Key Point: . . . we recom-
mend separate build trees
. . . multiple builds of the li-
braries can be maintained
from the same source tree
. . . problems with configuring
in a ’dirty’ directory (are elim-
inated) . . .

Setting up a build tree is straight-forward. Figure 2 illustrates the recommended
layout. First, from the highest directory in the source tree (Trilinos for a repository
copy, Trilinos-3.0.2 for a distribution), make a new directory - for an MPI build on a

13

TrilinosTM Developers Guide TABLES

Linux platform, a typical name is LINUX MPI . Finally, from the new directory, type

Command: ../configure --with-mpi-compilers

(Note that various configure options might be necessary, see Section 2.3 for de-
tails.) Finally, type

Command: make

In summary:

cd Trilinos

mkdir LINUX_MPI

cd LINUX_MPI

../configure --with-mpi-compilers

make

At this point, the MPI version of Trilinos on a Linux platform is built and completely
contained in the LINUX MPI directory. No files outside this directory have been
modified. This procedure can be repeated for any number of build targets.

Note: Although we recommend the above location for build trees, they can be set
up anywhere.

2.3 Configuring Trilinos

The most common issue encountered when con-
figuring Trilinos is that it is nearly impossible to
determine what caused configure to fail based on
the standard output. If the output from configure
is inadequate, look at the config.log file (in the
buildtree) for the package that failed to configure
properly.

Key Point: . . . to determine
what caused configure to fail
. . . look at the config.log file
. . .

To determine which package failed to configure, look at the bottom of the output
from the configure command. One of the last lines will say something like:

configure: error: /bin/sh ’../../../packages/epetra/configure’

failed for packages/epetra

14

2.3 Configuring Trilinos TrilinosTM Developers Guide

This particular error indicates to look in packages/epetra/config.log .

To configure from a remote build tree, simply run the configure script in source tree
from the root of the build tree. In the example above, cd to the SOLARIS SERIAL
directory and type

Command: ../configure <configure options>

A detailed list of configure options can be seen by typing

Command: ./configure --help=recursive

from the top level of the source tree. This will display the help page for the Trilinos
level as well as all Trilinos packages that use Autoconf and Automake. The output
from this command is quite extensive. To view the help page for an individual
package, cd to the home directory for the package in the source tree and type

Command: ./configure --help

This command will also display the help page for Trilinos level options when used
from the Trilinos home directory in the source tree.

Many of the Trilinos configure options are used to describe the details of the build.
For instance, serial or mpi, all of the packages, or just a proper subset.

To configure for serial libraries, no action is necessary, but to configure for parallel
libraries, a user must append appropriate arguments to the configure invocation
line as described in “Trilinos Configuration Options”, section 2.4.

Also, to build the default set of Trilinos libraries, no action is necessary, but to ex-
clude a package that is built by default, AztecOO for example, append
--disable-aztecoo to the configure invocation line. Similarly, to include a pack-
age that is not currently built by default, Komplex for example, append --enable-komplex

to the configure invocation line.

Users are strongly encouraged to build only the
packages that are necessary because configur-
ing and building can take a long time. It is well
worth the time to look at which packages are build
by default enable and disable packages as neces-
sary.

Key Point: . . . build only
the packages that are nec-
essary because configuring
and building can take a long
time.

15

TrilinosTM Developers Guide TABLES

It is recommended that users always configure from the Trilinos level and use
--disable-<package> as required, rather than trying to configure from a lower
level. To see which packages are built by default and which ones aren’t, simply cd
to the Trilinos home directory and type

Command: ./configure --help

NOTES:

1. Enabling/Disabling package builds: The configure process is set up to
detect when a --disable-<package> option would break a package de-
pendency. For example, Ifpack depends on Epetra, so if a user wants to build
Ifpack, but types --disable-epetra , Epetra will be configured and built
anyway.

2. Installing libraries and header files: To install libraries and header files in
a particular location, use --prefix=<dir> on the configure line. If this
option is used, libraries will be located in <dir>/lib and header files in
<dir>/include/<package> .

3. Providing additional information to Autotools: Although Autotools will try
to determine all configuration information, the user must provide anything that
Autotools needs and cannot find. Also, if Autotools selects, for example, the
wrong BLAS library by default, the user must indicate which BLAS library
to use. Other issues such as standards non-compliance are also dealt with
here. If all required libraries (often the BLAS and LAPACK) are located in
standard places and no special compiler flags are required, try configuring
without providing additional information.

4. Sample configure invocation scripts:
Sample configure invocation scripts for a
wide variety of platforms can be found in
Trilinos/sampleScripts . These scripts
are named using the following conven-
tion: arch comm machine . For example,
sgi64 mpi atlantis .

Key Point: Sample con-
figure invocation scripts
for a wide variety of plat-
forms can be found in
Trilinos/sampleScripts .

Note that these scripts are examples only and are primarily useful for the
values of options such as LDFLAGS , CPPFLAGS , and CXXFLAGS . Do not
expect to be able to find a script that can be used without modification; try to
find a script for a similar machine to use as a guide.

The scripts in the repository are not always up to date. If a user submits
a script for a machine that few Trilinos developers have an account on, that
script may become obsolete if it is not updated by the user who submitted it.

16

2.4 Trilinos Configuration Options TrilinosTM Developers Guide

Users who create scripts for other machines are encouraged to check them
into the repository for the benefit of other users. Users who do not have
access to the repository can send scripts to the Trilinos Library Manager.

The following is an example configure invocation script for an SGI machine:

../configure --enable-mpi --with-mpi-libs=-lmpi \

--with-cflags=-64 --with-fflags=-64 \

--with-cxxflags="-64 -LANG:std -LANG:ansi-for-init-scope=ON \

-ptused -DMPI_NO_CPPBIND" \

LDFLAGS=" -64 -L/usr/lib64/mips4/r10000 -L/usr/lib64/mips4 \

-L/usr/lib64 " \

--enable-epetraext --enable-new_package \

--disable-komplex --enable-tsfcoreutils

2.4 Trilinos Configuration Options

The following options apply to all Trilinos packages unless an option doesn’t make
sense for a particular package (for example, a package that does not include any
Fortran code will not be sensitive to F77=g77), or otherwise noted. For options
specific to an individual package, cd to the home directory of the package and type

Command: ./configure --help

Basic Options

• --enable-examples

Build examples for all Trilinos packages (that are sensitive to this option). By
default, this option is enabled.

• --enable-tests

Build tests for all Trilinos packages (that are sensitive to this option). By
default, this option is enabled.

• --enable-debug

(NOX only.) This turns on compiler debugger flags. It has not been fully
tested. As an alternate, specify CXXFLAGS on the configure line.

• --enable-opt

(NOX only.) This turns on compiler optimization flags. It has not been fully
tested. As an alternate, specify CXXFLAGS on the configure line.

17

TrilinosTM Developers Guide TABLES

• --with-cppflags

Specify additional preprocessor flags (e.g., ”-Dflag -Idir”)

• --with-cxxflags

Specify additional C++ flags

• --with-ldflags

Specify additional linker flags (e.g., ”-Ldir”)

• --with-ar

Specify a special archiver command, the default is ”ar cru”.

Influential Environmental Variables

• CC

C compiler command.

• CFLAGS

C compiler flags.

• CXX

C++ compiler command.

• CXXFLAGS

C++ compiler flags.

• LDFLAGS

Specify linker flags.

• CPPFLAGS

C/C++ preprocessor flags.

• CXXCPP

C++ preprocessor.

• F77

Fortran 77 compiler command.

• FFLAGS

Fortran 77 compiler flags.

18

2.4 Trilinos Configuration Options TrilinosTM Developers Guide

MPI-Related Options

• --enable-mpi

Enables MPI mode. Defines HAVE MPI in the (Package) Config.h file. Will
test for the ability to preprocess the MPI header file and may test ability to link
with MPI. This option is rarely necessary as many of the below options also
turn MPI on.

• --with-mpi-compilers

Sets CXX = mpicxx (or mpiCC if mpicxx not available), CC = mpicc and F77
= mpif77. Automatically enables MPI mode. To use compilers other than
these, specify MPI locations with the below options. If none of these options
are necessary, use --enable-mpi to enable MPI mode. In this case, CXX,
CC, and F77 have to be set if the correct compilers are not chosen by default.

• --with-mpi=MPIROOT

Specify the MPI root directory. Automatically enables MPI mode. If this option
is set, --with-mpi-incdir and --with-mpi-libdir should not be used.
--with-mpi is a shortcut for setting
--with-mpi-libdir=MPIROOT/lib and
--with-mpi-incdir=MPIROOT/include .

• --with-mpi-libdir=DIR

Specify the MPI libraries location. Defaults to MPIROOT/lib if --with-mpi

is specified. If multiple directories must be specified, try
--with-ldflags="-L<dir1> -L<dir2>" instead.

• --with-mpi-libs="LIBS"

Specify the MPI libraries. Defaults to "-lmpi" if either --with-mpi or
--with-mpi-libdir is specified.

• --with-mpi-incdir=DIR

Specify the MPI include files location. Defaults to MPIROOT/include if
--with-mpi is specified. If multiple directories must be specified, try
--with-cppflags="-I<dir1> -I<dir2>" instead.

Developer-Related Options

• --enable-maintainer-mode

Enable make rules and dependencies not useful (and sometimes confusing)
to the casual installer.

19

TrilinosTM Developers Guide TABLES

2.5 Building Trilinos

If the configure stage completed successfully, just type

Command: make

and then, if --prefix was specified,

Command: make install

2.6 Tips for Making the Configure and Build
Processes More Efficient

Trilinos has grown to become a large piece of software. Not surprisingly, it can
take a very long time to configure and build all of Trilinos. Below are some tips for
speeding up the process:

• Only build the Trilinos libraries that are necessary.

Know which packages are built by default. Packages that necessary pack-
ages are dependent on will be turned on automatically, so don’t shy away
from disabling all packages that are not used directly. If a package config-
ures and builds that was not enabled explicitly, keep in mind that a package
that was enabled probably depends on this package.

• Consider disabling tests and examples.

The first time Trilinos is built on a machine, it is a good idea to build and run
some tests and examples. After that, disabling tests and examples can be
considered as a way to speed up the build process. To disable the tests and
examples for all packages, use the

Command: --disable-tests

and

Command: --disable-examples

options. The speedup realized by disabling tests and examples will vary
based on which packages are enabled; however, a speedup of about 1.6
could be expected for a “typical” mix of packages.

20

2.6 Tips for Making the Configure and Build Processes More EfficientTrilinosTM Developers Guide

• Decrease build time on some machines by creating multiple jobs.

If -j (jobs) is a valid option for make , specifing the -j option with a value
of two times the number of processors that the machine has will typically
result in a faster build process. For example, on a dual processor machine,
try replacing make with

Command: make -j 4

during the build step.

On a single processor machine, the speedup is minimal; on a machine with
multiple processors, the speedup can be quite significant. For example,
speedups of 1.73 and 2.45 were observed on a dual processor machine and
a four processor machine, respectively. Using two times the number of pro-
cessors for the argument to the jobs option is only a suggestion based on
observed performance; those who are interested in achieving optimal perfor-
mance are encouraged to experiment with various values and to report their
findings to trilinos-help@software.sandia.gov . The -j can also be
passed without a corresponding value, in other words

Command: make -j

When used in this way, the number of jobs created is unlimited. For machines
with a large number of processors this appears to work in some situations,
but machines with fewer than four processors appear to get bogged down
with overhead.

Other important notes about the configure and build processes:

• Any code that links to Trilinos must define
HAVE CONFIG H .

Key Point: Any code that
links to Trilinos must define
HAVE CONFIG H .

• Do not attempt to specify optimization flags using the --with-cxxflags ,
--with-cflags , or --with-fflags options. Use CXXFLAGS , CFLAGS and
FFLAGS instead.

• When creating a configure invocation script, be sure to use line continuation
characters properly. The characters should be at the end of every line, except
the last line, and should not be followed by any spaces.

• To verify that the entire configure invocation script has been parsed by Auto-
conf, open the config.status file in the top level of the build tree and grep
for the string ”with options”. Here you will find all of the options that Autoconf
pulled from the invoke configure script.

21

TrilinosTM Developers Guide TABLES

• Autoconf cannot detect spelling mistakes in configure invocation scripts.

• When experiencing problems during the make phase, it is often useful to
make clean before attempting to make again. Sometimes it even helps to
blow away the entire build tree and start over, although this is rarely neces-
sary.

• When building with LAM under RH9 Linux, configure complains that it cannot
find mpi++.h. The message in the config.log file is:

/usr/include/mpi.h:1064:19: mpi++.h: No such file or directory

The following modified configure invocation works:

Command: ../configure --enable-mpi CXX="mpiCC -DLAM BUILDING"

• The build process will fail on OSX if “DropZip” is used to unzip the Trilinos
tarball. This utility truncates long file names.

• A list of FAQ’s for the Trilinos build process can be found online at
http://software.sandia.gov/Trilinos/faq.html .

2.7 Adding and Removing Source Files

Commonly a developer needs to add files to or remove files from a Trilinos package.

This process can be divided into the following steps:

1. Obtain the supported versions of Autoconf and Automake

2. Update source code from Trilinos repository

3. Add new files to or remove obsolete files from the Trilinos repository

4. List new files in or remove obsolete files from Makefile.am

5. If adding a new Makefile.am, update configure.ac and the parent Makefile.am

6. Bootstrap

7. Test the new code

8. Update source code from Trilinos repository

9. Commit the changes to the Trilinos repository

22

2.7 Adding and Removing Source Files TrilinosTM Developers Guide

We describe these steps below in greater detail. The steps assume a simple addi-
tion or removal of source files from a Trilinos package that uses Autotools. Special
situations such as adding header file or library dependencies or conditionally com-
piling new files require a more complicated process. In addition, many of the re-
strictions listed below apply only to development and release branches. If a branch
is established for a separate purpose (for example, to attempt an experimental re-
structuring of existing code), the restrictions do not apply. However, in this case,
the restrictions do apply when any changes from the branch are to be merged back
into the development branch.

The section frequently mentions various CVS commands. For more information
on these CVS commands, see Section A. For a more complete listing of CVS
commands, see the GNU CVS Home Page [10].

1. Obtain the supported versions of Autoconf and Automake.

The current supported versions of Autoconf and Automake are documented
in Trilinos/config/AutotoolsVersionInfo , which can be found in the
Trilinos repository. Do not assume that the most recent versions Autoconf and
Automake are supported. The supported versions of Autoconf and Automake
can always be found on software.sandia.gov. This makes software a good
machine to bootstrap on.

2. Update source code from Trilinos repository

Obtain the most current version of Trilinos (for the branch being worked on).
From the top Trilinos directory type

Command: cvs -q update -dP

3. Add new files to or remove obsolete files from the Trilinos repository

If a whole new directory, abcdir, is to be added, type

Command: cvs add abcdir

to add abcdir to the repository. This must be done before adding any of the
contents of abcdir.

To add new files abc.cpp and abc.h to the Trilinos repository, type

Command: cvs add abc.cpp abc.h

in the directory where the files are located (in a checked out version of the
Trilinos repository). To remove the same files, type

Command: cvs remove abc.cpp abc.h

23

TrilinosTM Developers Guide TABLES

Note that directories cannot be removed from the repository using cvs

remove .

4. List new files in or remove obsolete files from Makefile.am

New source files should be placed into a category in the appropriate Make-
file.am. Typically, the directory in which the new files are located will contain
a Makefile.am, but sometimes source files are listed in the Makefile.am one
directory above the files. When adding a new directory that will require a
Makefile (for example, when adding a new test directory), create a new Make-
file.am. Usually a developer can find a Makefile.am to use as a template in
the new package package. To remove files from the build process, delete the
file names from the appropriate Makefile.am.

5. If adding a new Makefile.am, update configure.ac and the parent Makefile.am

When adding a new Makefile.am, the corresponding Makefile must be listed
in the configure.ac file that is located in the same package as the Makefile.am
(if the Makefile.am is not a part of any package, ie part of the general Trilinos
framework, list the corresponding Makefile in the Trilinos level configure.ac).
The list of Makefile’s is near the very bottom of the configure.ac file.

Any new directories that contain a Makefile.am must be listed in the Make-
file.am in the directory immediately above the new directory. List the new
directory on the SUBDIRS line. If the parent directory does not contain a
Makefile.am, create it and add the name of the parent directory to the SUB-
DIRS line in the Makefile.am in the directory above the parent directory (re-
peat as necessary to reach an existing Makefile.am).

Use cvs add to add all new Makefile.am’s.

6. Bootstrap

First, from the top-level directory of the appropriate Trilinos package (for ex-
ample Trilinos/packages/epetra), type

Command: ./bootstrap

The bootstrap should complete without any errors. Add any Autotools files
that are generated during the bootstrap using cvs add .

7. Test the new code

Reconfigure and rebuild the Trilinos package. Perform tests associated with
the new code, as well as the rest of the tests for the package to insure that
both the new code works and existing code has not been broken. When
changes could possibly affect other packages, tests for affected packages
should also be run. The simple way to run all of the required tests is to use

24

2.7 Adding and Removing Source Files TrilinosTM Developers Guide

the checkin test harness. This script can be found in
Trilinos/testharness/checkin-test-harness . Directions explaining how
to run the tests associated with the checkin test harness can be found in the
comments at the top of the script itself.

8. Update source code from Trilinos repository

There are two good reasons to update the source code again. First, other
developers could have committed changes during the past several steps of
this process. Though this is unlikely, it is worth checking. If changes were
committed, minimally the testing step will need to be redone. If files related to
configuring or building were modified, more will have to be done if collisions
occur. Some of the possibilities are beyond the scope of this introductory doc-
ument; however, we will briefly discuss the most common collision scenario.
Typically the generated files will contain collisions (for example configure,
Makefile.in, or aclocal.m4), while the changes in the files created by devel-
opers (for example configure.ac or Makefile.am) will be successfully merged
by CVS. In this case, the best course of action is to remove the files with
collisions, cd to the top level of the Trilinos package, perform a cvs update

, and then begin the above process again from “Bootstrap” step. As long
as the changes are merged in the non-generated files, bootstrapping should
resolve the problem.

A second reason to update again before committing changes is to avoid con-
fusion. After a bootstrap, all of the generated files will get an updated times-
tamp, but in most cases only some of the files will actually be modified. If
a developer commits changes before updating, all of the generated files will
be considered to have been modified. This is bad for several reasons. One
of the most important is that when committing changes, a developer should
always verify that the list of files that are about to be committed makes sense.
A cvs update will check to see if the file has really been changed or if it
simply has a new timestamp.

9. Commit the changes to the Trilinos repository

Once all of the above steps are completed, the final step is to commit the
changes to the repository. Start by typing

Command: cvs commit

Next verify the list of files that appears and enter an appropriate log mes-
sage. Developers who are unfamiliar with the process of committing changes
should see Section A for a more detailed description of this process.

Finally, save the file and exit the CVS editor to commit the changes.

When using the above process to commit new source code, the new source
must be functioning properly, otherwise the repository will not be stable. At

25

TrilinosTM Developers Guide TABLES

the same time, developers are encouraged put new code into the repository
during initial development. This will ensure that work is backed up and pro-
vide version control. When adding unstable code to the repository, only two
steps are necessary. First, use the cvs add command as mentioned above,
and then modify the commit command slightly to commit only the new source
by typing

Command: cvs commit newfile1.cpp newfile2.cpp

Provided that the new files are not added to the make structure, the addition
of the new files should not negatively affect the repository. Distribution tar-
balls will even skip over the new source. A common log message for this type
of commit is simply “Checking in for safe keeping; code is not yet functioning”.
Developers are encouraged to include a short description of what the code
will do when it is complete.

3 Services Available to Trilinos
Packages

A number of services exist for Trilinos packages. Many of these services relate
directly to the requirements and suggested practices for Trilinos packages. For
example, the CVS repository is discussed below, and Trilinos packages must make
use of this repository. Also, Bonsai, Bugzilla and Mailman are all tools that relate to
suggested practices. (It should be noted that these services are not simply meant
to satisfy SQE requirements. Rather, Bonsai, Bugzilla and Mailman have proved
to be very useful tools. Using these tools together, along with the CVS repository,
has led to a more time and cost effective code development process.) For more
information about any of the below services, please contact the Trilinos Project
Leader.

3.1 Configuration Management

Autoconf [8], Automake [9] and Libtool [13] provide a robust, full-featured set of
tools for building software across a broad set of platforms (see also the “Goat
Book” [21]). Although these tools are not official standards, they are commonly
used in many packages. Many existing Trilinos packages use Autoconf and Au-
tomake (and will use Libtool in the future). However, use of these tools is not
required.

26

3.2 Regression Testing TrilinosTM Developers Guide

Package developers who are not currently using autotools, but would like to, can
get a jump start by using a Trilinos package called “new package”. This trivial
package exists for one primary purpose. It walks a developer through the process
of setting up a package to configure and build using autotools. General instructions
for how to get started can be found in Section 7.

Trilinos provides a set of M4 [11] macros that can be used by any other package
when its Autoconf and Automake configure and build system is being setup. These
macros perform common configuration tasks such as locating a valid LAPACK [1]
library, or checking for a user- defined MPI C compiler. The macros can be found in
the Trilinos CVS repository in Trilinos/config. These macros minimize the amount
of redundant effort in using Autotools, and make it easier to apply a general change
to the configure process for all packages.

3.2 Regression Testing

Trilinos provides a variety of regression testing capabilities. Within a number of
Trilinos packages, we employ “white box” testing where detailed information about
the software is used and probed. In the future, Trilinos will perform “black box”
testing of packages via the Trilinos Solver Framework (TSF) virtual class interfaces.
Any package that implements the TSF interfaces (see Section 6.2) will be tested
via this black box test environment.

Trilinos encourages packages to have comprehensive regression tests by recom-
mending the use of a test coverage tool. A free test coverage tool called COV-
TOOL [3] has been used in the past to analyze Trilinos packages. COVTOOL
includes step-by-step directions for installation and use. To assist package de-
velopers in using this tool, Trilinos provides example configure invocation scripts
for building with COVTOOL. Please note that COVTOOL must be installed before
these scripts will work. The invocation scripts can be found in
Trilinos/sampleScripts . The names of all scripts that are for use with COV-
TOOL end in “ codecov”.

3.3 Test Harness

Trilinos packages that configure and build using Autotools can easily utilize the the
Trilinos test harness. The Trilinos test harness is composed of two components.

One part of the test harness is used to run nightly tests on a number of platforms.
This portion of the test harness performs a cvs update (gets the most recent

27

TrilinosTM Developers Guide TABLES

source code), builds the libraries and runs any tests that have been integrated into
the test harness.

Tests that are added as “daily” tests are run six times a week, while “weekly” tests
are run once a week. Currently the nightly test harness only runs on Linux, IRIX64,
Solaris and DEC/OSF1, but it will eventually run on 5-8 platforms. Packages that
have not ported to a particular platform can be excluded from the testing process
on that platform. Packages that do not have any tests integrated into the test
harness can still benefit by testing that libraries build without any errors.

The second component of the test harness is a script that should be executed
by users before checking updates into the repository. This script is located in
Trilinos/testharness/checkin-test-harness . The script provides an easy way
for users to run all of the “daily” tests that have been added to the test harness
for all packages from one location. Instructions for running the script can be found
within the script itself.

Integrating existing tests into the testharness is not difficult. The process is dis-
cussed in Trilinos/testharness/HowToAddToTestHarness . Please note that
this document is a work in progress.

3.4 CVS Repository

Trilinos source code is maintained in a CVS [10] repository. It is very easy to
add new packages to the repository. Packages that already use CVS can even
retain their CVS history! Instructions for obtaining a copy of Trilinos via the CVS
repository can be found in Section 2

For those not familiar with CVS, a brief discussion covering some of the most
common CVS commands is available in Section A. For a more complete listing of
CVS commands, see the GNU CVS Home Page [10].

3.5 Bonsai

The CVS history of the Trilinos project is accessible via a web-based interface
package called Bonsai [17]. This tool can be found on the web at
http://software.sandia.gov/bonsai .

28

3.6 Bugzilla TrilinosTM Developers Guide

Bonsai gives developers the ability to view the
changes made to the files in the repository. De-
velopers can search based on filename, direc-
tory, branch, date, user who made the change, or
any combination of these criteria. The differences
between any two versions of a file may also be
viewed, which can be very helpful when debug-
ging.

Key Point: The differences
between any two versions of
a file may also be viewed,
which can be very helpful
when debugging.

3.6 Bugzilla

Feature and issue reports are tracked using Bugzilla [18]. Bugzilla can be found on
the web at http://software.sandia.gov/bugzilla . A Bugzilla account is nec-
essary for submitting bugs. Those interested can sign up at the website. All issues
related to any Trilinos package that uses Bugzilla should be submitted to Bugzilla.
This even applies to cases in which one developer diagnoses and fixes a bug within
a short period of time. A bug report is still very valuable in this case because it pro-
vides an artifact that outlines the problem and explains how the problem was fixed.
A bug report should be filled out with as much detail as possible. Likewise, after a
bug has been resolved, the developer should also provide a detailed description of
the solution that was used.

NOTE: In the context of Bugzilla, “bug” can refer not only to an error in existing
code, but also to a desired enhancement. For example, a bug report should be
submitted to Bugzilla to report a segmentation fault that occurs when using an
existing Ifpack preconditioner, and a bug report should also be submitted to request
a new Ifpack preconditioner. “Issue” and “bug” are used interchangeably in the
discussion of Bugzilla in this guide.

3.7 Mailman

Email lists are maintained for Trilinos as a whole and for each package through
Mailman [12]. This tool can be found on the web at
http://software.sandia.gov/mailman/listinfo . Those interested in signing up
for one or more lists may do so at the website. Non-Sandians are able to sign up for
the “Users” and “Announce” lists. Sandians should keep this in mind when posting
to these lists.

Lists for new packages can be set up very easily. Each package usually has
five mailing lists. The example mailing lists mentioned below are to be used for
issues relating to all of Trilinos. The names for the lists pertaining to individ-
ual packages follow the same naming scheme, simply replace “Trilinos” with the

29

TrilinosTM Developers Guide TABLES

name of the package. For example, the list for Trilinos users is called Trilinos-
Users and the email address is trilinos-users@software.sandia.gov The
list for Epetra users is called Epetra-Users and the associated email address is
epetra-users@software.sandia.gov

Tip: While those who use Epetra (or any other Trilinos pack-
age) are also “Trilinos users”, the lists are not set up to recog-
nize this. In other words, those who subscribe to the Epetra-
Users mailing list do not necessarily form a subset of those
who subscribe to the Trilinos-Users mailing list. This is also
true of all other list types. Keep this in mind when subscribing
and posting to lists.

• Trilinos-Announce trilinos-announce@software.sandia.gov

All Trilinos release announcements and other major news.

• Trilinos-Checkins trilinos-checkins@software.sandia.gov

CVS commit log messages that are related to Trilinos in general or packages
that have not had separate lists established.

• Trilinos-Developers trilinos-developers@software.sandia.gov

All discussions related to Trilinos-specific development (not specific to a Trili-
nos package) are conducted via this list. Important development decisions
that originate in other places (regular email, discussions, etc) should also
be posted to this list (or to the appropriate package list). By doing this, the
list archive can provide a record explaining why various changes were made
over time.

• Trilinos-regression trilinos-regression@software.sandia.gov

All regression test output that is not specific to a package.

• Trilinos-Users trilinos-users@software.sandia.gov

List for Trilinos Users. General discussions about the use of Trilinos.

• Trilinos-Leaders trilinos-leaders@software.sandia.gov

Mailing list for representatives for each Trilinos package. There are no leaders
lists for individual packages.

30

3.8 Package Website Template TrilinosTM Developers Guide

3.8 Package Website Template

A template is available at the new package website
http://software.sandia.gov/trilinos/packages/new package for creating web-
sites for new packages. Package developers are free to use this template or create
their own website from scratch. The new package website also contains informa-
tion about many of the other services that are available to Trilinos packages.

3.9 Portable Interface to BLAS and LAPACK

Portable interface to BLAS and LAPACK: The Basic Linear Algebra Subprograms
(BLAS) [16, 6, 5] and LAPACK [1] provide a large repository of robust, high-performance
mathematical software for serial and shared memory parallel dense linear algebra
computations. However, the BLAS and LAPACK interfaces are Fortran specifica-
tions, and the mechanism for calling Fortran interfaces from C and C++ varies
across computing platforms. Epetra (and Tpetra) provide a set of simple, portable
interfaces to the BLAS and LAPACK that provide uniform access to the BLAS and
LAPACK across a broad set of platforms. These interfaces are accessible to other
packages.

4 Trilinos Package Requirements

The philosophy of the Trilinos project is to minimize the number of explicit require-
ments placed on packages. Instead, we attempt to describe high-level require-
ments coupled with suggested practices. This approach allows freedom to define
how requirements are satisfied yet, at the same time, provides guidance and sup-
port for packages that do not have a full set of established software engineering
practices. In rare cases, requirements may be waived for packages on a case-by-
case basis with the approval of the Trilinos Project Leader.

Package requirements can be split into two basic categories:

1. Interoperability mechanisms: Depending what a new Trilinos package does,
it should be able to interact with one or more other Trilinos packages. Often
this means being able to accept an application matrix and vector objects
as either TSF objects or Epetra objects, and that the package implements
relevant TSF abstract interfaces. Response to Trilinos configuration options
also falls in this category.

31

TrilinosTM Developers Guide TABLES

2. Software engineering processes: This category includes formal support for
software design, implementation and support, including processes for captur-
ing user requirements, documenting design, source control, user documen-
tation, issue tracking and product release.

Trilinos package requirements and suggested practices are summarized in Table 2.

Requirement Package must: Suggested Practice Package can:
Keep source files as a self-contained collection in a
single directory under the Trilinos/packages di-
rectory in the Trilinos CVS repository. Change logs
must be archived and communicated to interested
Trilinos developers.

Utilize Trilinos Mailman lists to archive and commu-
nicate software change logs.

Have process in place to port to all supported plat-
forms

Use the Trilinos Autotools environment and lever-
age the existing portability facilities already used by
numerous packages.

Respond to all relevant configure options Use Autoconf and Automake, utilizing the collection
of Trilinos M4 macros to minimize extra effort.

Respond to software faults in a timely manner Use Trilinos Bugzilla site to record and track soft-
ware issues, responding to issues in order of prior-
ity.

Provide unit and regression testing Register test scripts with the Trilinos test harness,
which runs nightly on a variety of supported plat-
forms and can be used by developers before check-
ing in changes.

Table 2. Trilinos Package Requirements and Suggested
Practices.

Although there are several requirements listed in Table 2, we have structured the
integration process so that packages can be incorporated into Trilinos in a gradual
manner. Listed below are four levels of requirement compliance. It is common for
new packages to address these steps one at a time, and not necessarily in the
listed order.

4.1 Add Package to Trilinos Repository

Except for rare instances, placing a package in the Trilinos CVS repository is a min-
imum requirement for any package to become part of Trilinos. Other than receiving
approval from the Trilinos Project Leader to add a new package to Trilinos, there
are no prerequisites for adding a package to the Trilinos repository. At this stage,
it does not matter if the package is finished. In fact, we encourage developers to
keep source files in the repository from package inception so that source code is
backed up and properly managed. Our primary restrictions are:

32

4.2 Port Package to All Supported Platforms TrilinosTM Developers Guide

1. A package must be buildable on one or more platforms in order to be added
to the Trilinos level configure and build structure.

2. A package must be portable to all supported platform in order to be built by
default using the top-level Trilinos configure process.

A package can remain in a predistribution state
indefinitely. Any package that is not ready or ap-
proved for release can easily be omitted from a
distribution.

Key Point: A package can
remain in a predistribution
state indefinitely.

4.2 Port Package to All Supported Platforms

Although use of Trilinos Autotools is the easiest and most robust way to ensure
portability across all supported platforms, a package is not required to use them.
At the same time, a package must provide some mechanism to build across all
platform that Trilinos supports. Typically, if not using autotools, this support would
be in the form of platform-specific makefiles that the installer could invoke for a
given platform.

4.3 Respond to All Relevant Configure Options

The Trilinos top-level configure script accepts numerous configuration options as
described in Section 2.3. To the extent that each option is appropriate, a package
should respond to each option. For example, if a package can be built with MPI
support, it should respond to the --enable-mpi option.

Note that this does not mean the package must use Trilinos Autotools, but must
simply be sensitive to certain defined parameters that are generated when the
Trilinos autotools scripts are invoked.

4.4 Respond to Issue Reports in a Timely
Manner

The Trilinos Team does not have any specific requirements concerning how bugs
should be submitted and processed. However, packages should have a process
in place that deals with issue tracking. Packages developer teams that are looking
for an efficient and useful issue tracking tool are encouraged to consider using
Bugzilla, which is discussed in Section 3.6.

33

TrilinosTM Developers Guide TABLES

5 Suggested Software Engineering
Practices

There are many ways to define an effective soft-
ware engineering process. As a result, the Trili-
nos project specifies very few requirements. At
the same time, many software packages do not
have well-defined practices to support good soft-
ware engineering. In this section, we discuss sug-
gested practices based on our experience with
some common tools and processes for software
engineering. We want to strongly emphasize
that these are suggested practices only and we
discuss them here in order to facilitate adoption
of practices for packages that have few existing
practices in place.

Key Point: . . . the Trilinos
project specifies very few re-
quirements . . . we discuss
suggested practices here in
order to facilitate adoption of
practices for packages that
have few existing practices in
place . . .

5.1 Preliminary Steps

Prior to anything else, a new Trilinos package should have the following infrastruc-
ture established. Visit the Trilinos home page [15] for information on who to contact
for these preliminary steps.

The preliminary steps are:

1. Set up user accounts for each package developer on software.sandia.gov

.

2. Establish Bugzilla Product and Component Definitions for the new package,
identifying who will be default owner of each component.

3. Establish Email Lists for the package. Five lists will be defined:

(a) PackageName-Announce@software.sandia.gov : Announcements such
as new releases, feature lists and any other newsworthy items will be
sent to this list. Any person interested in any aspect of the package
should subscribe to this list.

(b) PackageName-Checkins@software.sandia.gov List to which all CVS
commit log message for the package are sent. Developers with an inter-
est in the day-to-day activity of package development can subscribe to
this list.

34

5.2 Practices to Support the Software Lifecycle TrilinosTM Developers Guide

(c) PackageName-Developers@software.sandia.gov List by which all de-
velopment discussions are conducted, or to which notes from develop-
ment discussions are sent and archived. This is also the list to which
detailed design documentation is sent for review and archiving.

(d) PackageName-Regression@software.sandia.gov List to which all au-
tomated regression test results are sent for archival purposes.

(e) PackageName-Users@software.sandia.gov User forum where pack-
age users can communicate with each other. Developers should monitor
this list and interject comments as necessary.

These preliminary steps can generally be completed in a few hours. Once com-
plete, the new package has a set of tools in place that address a large fraction of
software engineering practices.

5.2 Practices to Support the Software Lifecycle

One common view of software engineering processes breaks the process down
into seven phases:

1. Requirements.

2. Specification.

3. Design.

4. Implementation.

5. Integration.

6. Maintenance.

7. Retirement/Replacement.

In this section we discuss suggested practices to address most of these phases.
The value of adopting these specific practices is that they are commonly used or
planned for use in a number of existing Trilinos packages. It is worth noting that
testing is not a phase, but should be done at each of the above phases in the
process as appropriate for that phase.

35

TrilinosTM Developers Guide TABLES

5.3 Requirements

The majority of requirements for Trilinos packages come either directly or indi-
rectly from funded research proposals and plans. Although these requirements are
sometimes difficult to elicit from the proposals and plans, we assume that a pack-
age is satisfying requirements by virtue of being funded. Therefore we suggest
that package developers track their requirements as part of the communication
with funding sponsors. Regardless of the source of requirements, the appropriate
documents should be kept under source control.

5.4 Specification/Design

Package specifications can be done in many ways. An effective way for object-
oriented, e.g., C++ packages is to use documented header files and a documenta-
tion tool such as Doxygen [20], and then communicate the generated HTML output
to the package development team via the
package-developers@software.sandia.gov email list. Package specifications
created using another method should also be communicated to the development
team. If appropriate, the clients for this feature should also be included on this
correspondence. This approach satisfies both the specification and the design
requirements in the case of object-oriented engineering of mathematical software.

Also worth noting in this section is that the end of the design and early part of the
implementation phases is the ideal time to write the first set of unit tests. These
tests can be used to confirm the interface structure and prepare for incremental
implementation testing.

5.5 Implementation

Assuming that the above approach is used to define a documented header file, im-
plementation involves implementing the methods as specified and developing test
code to verify the correctness of the implementation. Implementing new capabil-
ities should never take place in a release branch. Changes to release branches
should be limited to fixing broken code and related activities. For example, clarify-
ing vague or incorrect documentation and making changes necessary to port to a
new platform.

36

5.6 Integration TrilinosTM Developers Guide

5.6 Integration

Prior to checking any new code into the Trilinos CVS repository, all regression
tests for any affected package should be run by the developer. Also, the devel-
oper should make a special point of confirming that nightly automatic regression
tests ran successfully. Confirmation is easily done by visiting the archives for the
package-regression@software.sandia.gov mail lists. The archives contain the
results of the regression test runs for all Trilinos packages. A developer will also
see the results of the regression tests run by a particular script if their email ad-
dress is explicitly listed in that test script.

5.7 Maintenance

Trilinos provides a number of tools to facilitate the ongoing development and sup-
port of packages. CVS, Bugzilla, Mailman and the regression test harness are the
most important ones.

1. CVS: The Trilinos CVS repository is the most important tool for proper main-
tenance. With each Trilinos release, a release branch of the CVS repository
is created that allows simultaneous, independent development on the main
CVS branch and incremental feature development and bugfixes on the re-
lease branch. Prior to a release, each package is encouraged to stabilize its
source on the main development branch, or create a tagged version of the
package that is stabilized. At that point, the main Trilinos development branch
will be tagged and branched using the versions of all packages as specified
by the package leaders. After the Trilinos tag and branch is complete, pack-
age developers are encouraged to continue large scale active development
on the main development branch, respond to bugfixes in the release branch
and merge bugfixes from the release branch into the development branch.
Further discussion on these topics is in Appendix A. For a full discussion of
advanced CVS topics, we recommend the book by Fogel and Bar [7].

2. Bugzilla: The Trilinos Bugzilla site allows users and developers to submit
issues against a package. Issues may be submitted against the following
components of a package:

(a) Configuration and Building.

(b) Documentation and Web Pages.

(c) Examples.

(d) Source code.

37

TrilinosTM Developers Guide TABLES

(e) Tests.

Issues may range from a critical source code bug to a new feature request.
When an issue is submitted, the owner, submitter and any party that was
explicitly listed will be notified upon submission of the issue, and when any
subsequent update is made to the issue.

3. Mail lists: Trilinos mail lists also support ongoing maintenance by allowing
developers to subscribe to the package checkins list. When subscribed to this
list, all CVS commits made for the package will be sent in email form to the
checkins list, and subscribers will see exactly what has changed. The other
package lists mentioned in Section 3.7 also facilitate ongoing communication
between developers, users and clients.

4. Test Harness: The Trilinos test harness simplifies code maintenance in two
ways. First, code is tested on a nightly basis on various platforms to help
maintain portability. Second, developers can execute a check-in version of
the test harness before committing changes. Developers can easily con-
tribute to the coverage of the test harness. For more information about the
test harness see Section 3.3.

Developers are encouraged to utilize a test coverage tool when writing re-
gression tests for the test harness. For more information about a free test
coverage tool called COVTOOL, which has been used to analyze the test
coverage for multiple Trilinos packages, see Section 3.2.

5.8 Retirement/Replacement

To the extent possible, checkins to a release branch should not force interface
changes for users. Even on the development branch, users should be notified (via
the package-users mail list) that checkins are about to happen that would require
an interface change to user code.

In general, we will be very slow to omit a package, or version of a package, that
is in use unless there is equivalent interface and functionality support from a new
package.

38

6 Petra and TSF: Two Special Package Collections TrilinosTM Developers Guide

6 Petra and TSF: Two Special Package
Collections

In order to understand what Trilinos provides beyond the software engineering
tools and the contributions of each Trilinos package, we briefly discuss two special
Trilinos package collections: Petra and TSF. These two package collections are
complimentary, with TSF providing a common abstract application programmer in-
terface (API) for other Trilinos packages and Petra providing a common concrete
implementation of basic classes used by most Trilinos packages.

6.1 Petra

Matrices, vectors and graphs are basic objects used in most solver algorithms.
Most Trilinos packages interact with these kinds of objects via abstract interfaces
that allow a package to define what services and behaviors are expected from the
objects, without enforcing a specific implementation. This facilitates integration of
a Trilinos package into almost any existing application.

However, in order to use these packages, some concrete implementation of ma-
trix and vector classes must be selected. Petra is an object model for parallel,
distributed-memory, object-oriented matrix and vector classes. Presently there are
three Petra libraries: Epetra, Jpetra and Tpetra. Of the three, Epetra is the most
mature and the one presently used in production computing settings. Epetra is a
collection of concrete classes that supports the construction and use of vectors,
sparse graphs, and dense and sparse matrices. It provides serial, parallel and dis-
tributed memory capabilities. It uses the BLAS and LAPACK where possible, and
as a result has good performance characteristics.

In addition to providing easy construction and use of matrices, vectors and graphs
in a parallel distributed memory environment, one of the most important aspects of
Epetra is that every other Trilinos package can accept user data as Epetra objects.
This facilitates the use of multiple Trilinos packages in combination. For example,
Ifpack objects can be used as preconditioners for AztecOO, as can ML or Amesos
objects. Users can also use Trilinos packages in sequence such as solving linear
and eigen problems with the same matrix.

In summary, Epetra provides a common foundation for all other Trilinos packages
while retaining an open architecture that allows any package to be used indepen-
dently. Epetra also supports light-weight copying of user data, allowing easy inter-
operability with other package such as PETSc.

39

TrilinosTM Developers Guide TABLES

6.2 TSF

Many different algorithms are available to solve any given numerical problem. For
example, there are many algorithms for solving a system of linear equations, and
many solver packages are available to solve linear systems. Which package is
appropriate is a function of many details about the problem being solved and the
platform on which application is being run. However, even though there are many
different solvers, conceptually, from an abstract view, these solvers are providing a
similar capability, and it is advantageous to utilize this abstract view. TSF is a col-
lection of abstract classes that provides an application programmer interface (API)
to perform the most common solver operations. It can provide a single interface to
many different solvers and has powerful compositional mechanisms that support
the light-weight construction of composite objects from a set of existing objects.
As a result, TSF users gain easy access to many solvers and can bring multiple
solvers to bear on a single problem.

TSF is split into several packages. The most important user-oriented classes are
TSFCore and TSFExtended:

1. TSFCore: As its name implies, TSFCore contains a small set of core classes
that are considered essential to almost any abstract linear algebra interface.
The primary user classes in TSFCore are Vector, MultiVector, LinearOp and
VectorSpace. TSFCore is discussed in detail in [2].

2. TSFExtended: TSFExtended builds on top of TSFCore and includes over-
loaded, block and composite operators, all of which support powerful ab-
straction capabilities. The Meros package relies on TSFExtended to implicitly
construct sophisticated Schur compliment preconditioners in terms of exist-
ing component operators with little overhead in time or memory.

Both TSFCore and TSFExtended are important because they allow interfacing and
sophisticated use of numerical linear algebra objects without requiring the user or
application to commit to any particular concrete linear algebra library. This ap-
proach allows us to leverage the investment in sophisticated abstract numerical
algorithms across many concrete linear algebra libraries and gives application de-
velopers a single API that provides access to many solver packages.

7 Integrating a Package into Trilinos
Before beginning to add a new package to Trilinos, permission must be granted
by the Trilinos Project leader. Sections 2.7, 4, and 5 discuss different aspects of

40

7 Integrating a Package into Trilinos TrilinosTM Developers Guide

adding a package to Trilinos. These sections cover how to add files to a pack-
age, what is required of a package, and how these requirements could be met,
respectively. This section will address the steps that can be taken to integrate a
new package into the Trilinos configure and build system. It is assumed throughout
that a process like the one in Section 2.7 has already been used to add all of the
source files for the new package to the CVS repository. This section also assumes
that the recommended directory structure for Trilinos packages (src, test, example,
and doc subdirectories) is being used.

Some useful terminology for this section is listed in Table 3.

Term: Definition:
autotool’ed package A package that can be configured and built using Autotools.
new package A package to be added to the Trilinos Autotools configure and build process.
new package A Trilinos package found in Trilinos/packages/new package . Serves as

a guide for adding new packages to the Trilinos Autotools configure and build
processes.

np The generic name for a new package that is used throughout this section.
The source code for np is assumed to be located in Trilinos/packages/np

.

Table 3. Useful Terminology for Section 7.

There are seven general steps that need to be followed to add a new package to
the Trilinos Autotools configure and build system. Note that these steps do not
have to be completed in the exact order listed below, nor does a step necessarily
have to be completed in its entirety before moving onto the next step. (For example,
a portion of a library can be autotool’ed and tested before work begins on the rest
of the library.) The seven steps are listed below.

1. Request services that are provided to Trilinos packages.

See Section 3 for more information about services available to Trilinos pack-
ages such as mail lists and issue tracking. To request these services, contact
the Trilinos Team Leader. It is helpful to complete this step early on because
issue tracking can begin and mail lists can preserve initial commit comments.

2. Write the non-generated files necessary for Autoconf and Automake.

Examples of all of the new, non-generated Autoconf and Automake files re-
quired to add a packages to the Trilinos Autotools configure and build pro-
cesses are located within the new package directory structure. Most of these
files will need to be customized for each new package. See the individual
example files for more details. Instructions for customizing are listed behind

41

TrilinosTM Developers Guide TABLES

#np#

in the following files:

Trilinos/configure.ac

Trilinos/packages/Makefile.am

Trilinos/packages/new_package/Makefile.am

Trilinos/packages/new_package/configure.ac

Trilinos/packages/new_package/src/Makefile.am

Trilinos/packages/new_package/example/Makefile.am

Trilinos/packages/new_package/example/example1/Makefile.am

Trilinos/packages/new_package/test/Makefile.am

Trilinos/packages/new_package/test/test1/Makefile.am

Trilinos/packages/new_package/test/scripts/Makefile.am

Trilinos/packages/new_package/test/scripts/daily/Makefile.am

Trilinos/packages/new_package/test/scripts/daily/mpi/Makefile.am

Trilinos/packages/new_package/test/scripts/daily/serial/Makefile.am

Trilinos/packages/new_package/test/scripts/weekly/Makefile.am

Note that not all of these files are used in building new package, as it is a
very simple package.

3. Create generated Autoconf and Automake files.

IMPORTANT: Before starting this phase, please see
Trilinos/config/AutotoolsVersionInfo , and obtain the correct version of
both Autoconf and Automake.

If Trilinos/configure.ac or Trilinos/packages/Makefile.am have
been changed (these files will have changed if np is being added to the
Trilinos level configure and build system), run

Command: ./bootstrap

in the Trilinos directory. If any Autotools files at the Trilinos/packages/np

level or lower have been changed, run

Command: ./bootstrap

in the

Command: Trilinos/packages/np

directory.

The bootstrap commands should complete without any errors. Note that
while bootstrapping at the package level often completes in less than thirty
seconds, bootstrapping at the Trilinos level can take more than an hour.

42

7 Integrating a Package into Trilinos TrilinosTM Developers Guide

4. Test and debug Autoconf and Automake files.

Run configure with the appropriate options in a clean build directory. Once
the configure process completes successfully, type

Command: make

to build the configured packages. For information about configuring and build-
ing Trilinos, see Section 2. Testing and debugging can become a long itera-
tive process. Below are some tips for improving efficiency in this step.

• Consider disabling all of the packages that do not need to be built to
complete the current task. When debugging the configure.ac script for
np, consider configuring at the np level, as libraries that np is dependent
on are not needed at the configure stage. (To do this, make sure to point
at the np configure script from the build directory.)

• The echo command can be used in configure.ac to print out the value
of variables for debugging purposes.

• The AC CHECK FILE macro can be used in configure.ac to check for the
existence of a particular file or directory.

• Do not run configure in the source tree, always use a separate build
tree.

5. Add all Autoconf and Automake files to the Trilinos CVS repository.

The bootstrap command will generate files necessary for the configure
and build processes. These files must be added to the repository because
users are not required to have Autoconf or Automake. See Section 2.7 for
information regarding how to add files to the repository.

When the new files have been committed, a good sanity check is to checkout
a new copy of Trilinos and attempt to configure and build. This will catch any
files that have not been added.

6. Add regression tests to the Trilinos test harness.

For more information about this step, see Section 3.3. It is not uncommon for
packages to contribute tests to the test harness some time after the package
has been added to Trilinos. However, it is important that all packages can be
tested thoroughly via the test harness.

7. Perform tests.

Build with and without package options and run all tests associated with np
on a variety of platforms. Make sure that dependencies have been properly
established in the Autotools system so that users cannot disable packages

43

TrilinosTM Developers Guide TABLES

that np is dependent on. Finally, run the checkin test harness to ensure that
all Trilinos packages still build properly. For more information about how to
use the checkin test harness, see Section 3.3.

7.1 Improving Portability

Trilinos packages build on a wide variety of platforms. Below are a few tips for
improving portability using mechanisms associated with Autoconf.

• Make sure that np config.h is included in all your source files, directly or in-
directly. The value of any package-specific options are pulled from this file.
It is usually best to include it through a ConfigDefs file; read on for more
information.

• Include np config.h before (usually indirectly) including
(AnyOtherPackage) ConfigDefs.h, or the Autotools PACKAGE macros will be
improperly defined.

• Consider creating a file analogous to Epetra ConfigDefs.h. This file takes
care of various issues such as setting the value of package-specific options
and including the best available versions of header files. For example, if np
requires a math header file, configure should test for both cmath and math.h.
Then the ConfigDefs file chooses to include cmath if it is available. If cmath
is not available, math.h is included. If neither file is available, the configure
stage will not complete successfully. All header files are included once in the
ConfigDefs file, and the ConfigDefs file is included in all other source files.
Don’t forget to include np config.h in the ConfigDefs file because that is the
file that contains the results of the checks performed during the configure
stage.

8 Interoperability Status for Existing
Trilinos Packages

Figure 3 shows how the present collection of Trilinos packages depend on each
other.

44

8
Interoperability

S
tatus

for
E

xisting
Trilinos

P
ackages

Trilin
o

s
T

M
D

evelopers
G

uide

Depends

On

Can

UsePackage

Epetra Epetra
Ext

AztecOO Komplex Ifpack Amesos ML NOX TSF Core TSF Ext Belos Meros

Epetra Ext

Anasazi

Amesos

TSFCore

Belos

Meros

Anasazi

Epetra

AztecOO

Komplex

ML

TSF Ext

Ifpack

NOX

Based on this chart:
• AztecOO depends on Epetra, but Epetra is independent of AztecOO
• NOX can use Epetra, but is independent of Epetra.

F
ig

u
re

3.
C

urrentTrilinos
P

ackage
D

ependencies

45

TrilinosTM Developers Guide REFERENCES

References
[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du

Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users’ Guide. SIAM Pub., Philadelphia, PA, second
edition, 1995.

[2] Roscoe A. Bartlett, Michael A. Heroux, and Kevin R. Long. TSFCore 1.0:
A package of light-weight object-oriented abstractions for the development of
abstract numerical algorithms and interfacing to linear algebra libraries and
applications. Technical Report SAND2003-1378, Sandia National Laborato-
ries, April 2003.

[3] COVTOOL home page. http://www.covtool.sourceforge.net, 2004.

[4] David Day and Michael A. Heroux. Solving complex-valued linear systems via
equivalent real formulations. SIAM J. Sci. Comput., 23(2):480–498, 2001.

[5] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of
level 3 basic linear algebra subprograms. ACM Transactions on Mathematical
Software, 16(1):1–17, March 1990.

[6] J.J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson. An extended set of
Fortran basic linear algebra subprograms. ACM Transactions on Mathemati-
cal Software, 14, 1988.

[7] Karl Fogel and Moshe Bar. Open Source Development with CVS. Coriolis
Technology Press, Scottsdale, Arizona, 2nd edition, 2001.

[8] Free Software Foundation. Autoconf Home Page.
http://www.gnu.org/software/autoconf, 2004.

[9] Free Software Foundation. Automake Home Page.
http://www.gnu.org/software/automake, 2004.

[10] Free Software Foundation. Gnu CVS Home Page.
http://www.gnu.org/software/cvs, 2004.

[11] Free Software Foundation. Gnu m4 home page.
http://www.gnu.org/software/m4, 2004.

[12] Free Software Foundation. Gnu mailman home page.
http://www.gnu.org/software/mailman/mailman.html, 2004.

[13] Free Software Foundation. Libtool Home Page.
http://www.gnu.org/software/libtool, 2004.

46

REFERENCES TrilinosTM Developers Guide

[14] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu,
Tamara Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps,
Andrew Salinger, Heidi Thornquist, Ray Tuminaro, James Willenbring, and
Alan Williams. An Overview of Trilinos. Technical Report SAND2003-2927,
Sandia National Laboratories, 2003.

[15] Michael A. Heroux. Trilinos home page. http://software.sandia.gov/trilinos,
2004.

[16] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra sub-
programs for Fortran usage. ACM Transactions on Mathematical Software, 5,
1979.

[17] The Mozilla Organization. Mozilla Bonsai Home Page.
http://www.mozilla.org/bonsai.html, 2004.

[18] The Mozilla Organization. Mozilla Bugzilla Home Page.
http://www.mozilla.org/projects/bugzilla, 2004.

[19] Ray S. Tuminaro, Michael A. Heroux, Scott. A. Hutchinson, and J. N. Sha-
did. Official Aztec User’s Guide, Version 2.1. Sandia National Laboratories,
Albuquerque, NM 87185, 1999.

[20] Dimitri van Heesch. Doxygen home page. http://www.doxygen.org, 2004.

[21] G. Vaughan, B. Elliston, T. Tromey, and I. Taylor. Gnu Autoconf, Automake,
and Libtool. New Riders, 2000.

47

TrilinosTM Developers Guide REFERENCES

48

Commonly Used CVS Commands TrilinosTM Developers Guide

A Commonly Used CVS Commands

To access the Trilinos CVS repository, an account on software.sandia.gov is re-
quired. To request an account, send a note to trilinos-help@software.sandia.gov

. The following two environment variables must be set to access the repository:

Command: CVSROOT :ext:your user name@software.sandia.gov:/space/CVS

Command: CVS RSH ssh

(Replace “your user name” with your user name on software.sandia.gov.)

Below is a brief description of the most commonly used CVS commands. For a
more complete listing of CVS commands, see the GNU CVS Home Page [10].

• Checking Out a Working Copy: To checkout a working copy of the devel-
opment branch of Trilinos in the current directory from the CVS repository,
type

Command: cvs checkout Trilinos

To checkout a working copy of only one package of Trilinos in the current
directory, type

Command: cvs checkout <package name>

(Replace “package name” with the name of the package.)

To checkout a different branch or a tagged version of Trilinos, type

Command: cvs checkout -r <name of branch or tag> Trilinos

• Updating a Working Copy: To update after a version has been obtained use
the cvs update command. First, cd to the directory that is to be updated
(often the Trilinos root directory). Then type:

Command: cvs -q update -dP

The “-q” option means “be somewhat quiet”. Try an update without the “-q” to
see exactly what the option does.

The “-d” option means to get any new directories. For example, if a new
package is added to the repository, but the “-d” option is not used, that new

49

TrilinosTM Developers Guide Appendix A

package will never appear in the working copy. However, the first time that
the “-d” option is used, all of the new package directories will be downloaded,
and from that time on, all CVS updates will update the directories that were
downloaded. It is good practice to include this option for every CVS update.

Finally the “-P” option “prunes” empty directories. This helps to keep the
directory structure from getting more cluttered than it needs to. For example,
the old “petra” and “tsf” packages were removed from the repository, but the
directory structures will remain if this option is not specified. If an empty
directory is needed, simply issue one update command without the “-P” and
the empty directories will be restored.

• Viewing Local Changes: After saving changes to a working copy of a branch
of the Trilinos repository, the differences between the most recently obtained
version of the edited file(s) and the current local version of the file(s) can be
viewed using the following command:

Command: cvs -q diff

The “-q” option again means “be somewhat quiet”. Try a diff without the “-q”
to see exactly what the option does.

The diff command works recursively, but optionally accepts options that spec-
ify specific files and/or directories. For example, to see the diff’s associated
only with a file in the current directory named abc.cpp , as well as all files
located (recursively) in the relative directory examples , type

Command: cvs -q diff abc.cpp examples

• Adding Files to and Removing Files From the Repository:

To add new files abc.cpp and abc.h to the Trilinos repository, type

Command: cvs add abc.cpp abc.h

in the directory where the files are located (in a checked out version of the
Trilinos repository). To remove the same files, type

Command: cvs remove abc.cpp abc.h

The above commands do not actually add the files to or remove the files from
the repository, but simply prepare for the addition or removal of the files. The
initial version of the file will be written to the repository using cvs commit .

The cvs add command can also be used to add new directories to the
repository. When adding a directory, no subsequent cvs commit is neces-
sary. Directories cannot be removed from the repository using cvs remove

.

50

Commonly Used CVS Commands TrilinosTM Developers Guide

• Committing Changes: Note that the CVSEDITOR environment variable de-
notes which text editor will be used to edit CVS commit logs. The default
value for CVSEDITOR is vi .

Before committing changes, be sure to perform a CVS update. Any con-
flicts must be resolved before a commit will complete properly. Changes are
committed (saved) to the repository using the following command:

Command: cvs commit

The above command will recursively check the current directory and all di-
rectories that are direct descendants of the current directory for changes. To
commit only specific files or directories (specified directories will be checked
recursively for changes), append the files and directories to be committed as
additional arguments to the commit command. For example, to commit the
changes to the file called file1, and the directory called directory1, type

Command: cvs commit file1 directory1

At this point, an editor window will appear with a list of files that are to be
added, removed, or modified. Make sure that the list makes sense for the
changes that are to be made. It is easy to inadvertently commit files or to
forget to remove files. Use cvs add to add a file and cvs remove to
remove a file from the repository.

Here are a few helpful tips to use when verifying the list of files to be commit-
ted.

– Make sure that all directly modified files appear in the list.

– Make sure that files generated from files that were modified appear in the
list. When modifying a Makefile.am, the corresponding Makefile.in will
change also. When modifying configure.ac, configure will also change,
but some Makefile.in files will also change when using macros such as
AC SUBST.

– If unsure about whether or not a file should be in the commit list, abort
the commit by closing the editor without saving, and choosing abort .
Then, if abc.cpp is in question, type

Command: cvs diff abc.cpp

Next, look at the diff output and see if it makes sense for the changes
that were made.

After verifying that all of the files that are in the list belong there and that
all files that belong in the list are listed, enter an appropriate description of
the changes that were made. Detailed log messages make it easier to track

51

TrilinosTM Developers Guide Appendix A

problems in the future. Also, reference any associated Bugzilla issue num-
bers and indicate which tests were run before making the change. Note that
lines in the log message that begin with “CVS:” will be removed. Lines de-
scribing files that are to be added, removed or modified should appear in the
log message, so remove the “CVS:” from the beginning of these lines. (Typ-
ically this means that the “CVS:” should be removed from every line except
line two.)

Finally, save the file, and exit the CVS editor to commit the changes.

52

The Trilinos Release Process TrilinosTM Developers Guide

B The Trilinos Release Process

From a developer’s perspective, the Trilinos Release Process consists of six phases.

• A target release date is announced in an email to the Trilinos-Developers mail
list.

This message also describes other details of the release such as the (ten-
tative) release version number, which packages are to be released (if this is
known at the time the message is sent) and whether the release will be an
inside release or a public release. It will be noted in the message that any
package development teams that would like a version of their code other than
what is in the development branch at the time of the release to be included
in the distribution should send the name of a tag that contains the correct
version to the Trilinos team member who will be creating the release branch.
The details of upcoming releases are usually also discussed during one or
more monthly Trilinos Leaders meetings.

• A release branch is created and tagged.

The creation of a release branch is discussed in Section C.

• Any issues that arise during the testing of the new branch are resolved.

The test suite that the release branch is subjected to varies by the type of
release; however, all issues must be resolved before the release can be ap-
proved.

• The Trilinos project leader approves the release.

• The release is is announced and made available.

An announcement of the release is sent to the Trilinos-Announce mail list.
For outside releases, the release is made available via a compressed tar file
from the Trilinos download site.

• Support for the release continues at least until the next release.

53

TrilinosTM Developers Guide Appendix B

54

Creating a New Trilinos (Release) Branch with CVS TrilinosTM Developers Guide

C Creating a New Trilinos (Release) Branch
with CVS

A CVS branch can be used to maintain a version of the code that is different than
the primary development branch. This section describes how to create a Trilinos
release branch, but the steps can easily be generalized to apply to other types of
branches. For example, developers commonly want to attempt an experimental
reworking of a piece of code. If there is a good chance that this code will not be
stable for some time or if the code might not ever become a part of the development
branch (ie the experiment fails), the developer might want to create a separate
branch. If the experiment is a success, the changes can always be merged back
into the development branch.

There are eight steps in creating a Trilinos release branch:

1. Checkout Trilinos

It is a good idea to start with a fresh copy of Trilinos. If an old copy is used,
various problems can occur. Most of these problems are beyond the scope
of this brief tutorial, but be advised that it will not work to make changes to
a local copy of Trilinos and commit those changes directly to a branch. To
create a branch for changes that have already been made to a local copy,
A developer must checkout a new working copy, create the branch, copy the
changes over, and then commit the changes to the branch.

To checkout a copy of the development branch, type

Command: cvs checkout Trilinos

To checkout a different branch or a tagged version of Trilinos, type

Command: cvs checkout -r <name of branch or tag> Trilinos

2. Update packages with specific tags, if necessary

Package developers have the opportunity to include a special tagged version
of their package in a release instead of the current version in the development
or release branch that is being branched off of for the release. For any pack-
ages that have such a tag to use, cd to Trilinos/packages/(package name)
and type

Command: cvs update -r <name of tag submitted>

55

TrilinosTM Developers Guide Appendix C

3. Tag the working copy

The existing branch is now tagged to mark the point where the new branch
will diverge. To do this, cd to the top Trilinos directory and type

Command: cvs tag <tag name>

For a release branch, the tag name should be root-of-trilinos-release-XYZ-branch

, where XYZ is the release number with the component numbers separated
by hyphens instead of periods. For example for release 3.1.13, XYZ should
be 3-1-13.

4. Create a branch

To create a branch, remain in the top Trilinos directory and type

Command: cvs tag -b <branch name>

For the Trilinos release version XYZ mentioned above, the branch name
should be trilinos-release-XYZ-branch .

5. Update to convert the working copy to the new branch

The act of creating a new branch does not convert the existing working copy
to a copy of that branch. To make this conversion, remain in the top Trilinos
directory and type

Command: cvs update -r <branch name>

To verify that the preceding command was successful, type

Command: cvs status configure.ac

The value of the “Sticky Tag:” field should begin with “branch name”.

6. Update the Trilinos release version number

When creating a new Trilinos release branch, the Trilinos version number
needs to be incremented in the Trilinos/configure.ac file. The version
number of individual packages can also be updated at this time. Note that
not all packages will have the same version number as Trilinos. Package
version numbers do not have to be updated at this time. Permission must be
obtained from package developers before the version number for a package
can be updated. To update a version number, open the configure.ac file and
search and replace the old version number with the new version number. The
number will need to be updated in one or two places. Next, remain in the top
level Trilinos directory (or the top level directory of the package) and type

Command: ./bootstrap

56

Creating a New Trilinos (Release) Branch with CVS TrilinosTM Developers Guide

to update the generated Autotools files to reflect the new version number.
Finally, follow the commit process listed in Section A to commit the changes.
Remember to update before committing so that generated files are not com-
mitted just because the timestamp changed. In the commit message, note
that branch name is listed.

7. Tag the new branch

It is a good idea to tag the branch at this point so that the initial state of the
branch is easily retrievable. It is required that the initial state of a release
branch is tagged. To perform this step, type

Command: cvs tag <initial tag name>

For the Trilinos release version XYZ mentioned above, the initial tag name
should be initial-trilinos-release-XYZ-branch .

8. Test the new branch

It is a good idea to test the new branch to help make sure that the above
process has been completed properly. As a part of the general release pro-
cess, many tests need to be run. This step simply refers to running a few
simple sanity checks (for example, configure and build Trilinos and run the
checkin-test-harness or a couple of individual regression tests) to work out
any obvious problems before the branch is subjected to the more complete
test suite.

57

