
USER GUIDE FOR TRAMONTO: A Density Functional Theory code

for inhomogeneous fluids at equilibrium or steady state

January 29, 2004

Contents

1 Abstract 3

2 dft input.dat 3
2.1 DIMENSION PARAMETERS . 4
2.2 MESH PARAMETERS . 6
2.3 FUNCTIONAL SWITCH PARAMETERS . 7
2.4 SURFACE PARAMETERS . 10
2.5 POTENTIAL TYPE PARAMETERS . 12
2.6 INTERACTION ENERGY PARAMETERS . 14
2.7 POLYMER INPUT PARAMETERS . 16
2.8 SEMI-PERMEABLE SURFACE PARAMETERS . 18
2.9 STATE POINT PARAMETERS . 19
2.10 CHARGED SURFACE BOUNDARY CONDITION PARAMETERS 20
2.11 DIELECTRIC CONSTANT PARAMETERS . 22
2.12 DIFFUSION PARAMETERS . 23
2.13 STARTUP CONTROL PARAMETERS . 25
2.14 OUTPUT FORMAT PARAMETERS . 27
2.15 COARSENING SWITCHES . 29
2.16 NONLINEAR SOLVER PARAMETERS . 31
2.17 LINEAR SOLVER PARAMETERS . 32
2.18 MESH CONTINUATION PARAMETERS . 33
2.19 ARC-LENGTH CONTINUATION PARAMETERS . 34

3 dft surfaces.dat 35

4 poly file 36

5 Cr file.dat 37

6 Introduction to output files 38
6.1 Primary Output . 38

6.1.1 dft dens.dat . 38
6.1.2 dft dens.datg . 38
6.1.3 dft output.dat . 38
6.1.4 dft out.lis . 38

6.2 Debugging Output . 38
6.2.1 stencil.out . 38
6.2.2 dft vext.dat . 38
6.2.3 dft vext c.dat . 38
6.2.4 dft zeroTF.dat . 38

1

6.2.5 dft zones.dat . 38
6.2.6 rho init.dat . 39
6.2.7 dens iter.dat . 39
6.2.8 resid iter.dat . 39
6.2.9 proc mesh.dat . 39
6.2.10 Charge vol els.dat . 39
6.2.11 Charge surf els.dat . 39

2

1 Abstract

This users guide is meant to introduce the new user to the input files needed to run Tramonto and the output
files produced by the code. We note that a graphical user interface has been developed for Tramonto. Instructions
for using the GUI follow the description of basic input and output files and parameters. For help on installation
of Tramonto, the GUI, and necessary libraries, see the Installation Guide1 found on the Tramonto home page
www.software.sandia.gov/tramonto.

2 dft input.dat

The default primary input file for Tramonto is called dft input.dat 2. It contains most of the parameters that define
a given run. However, depending on the problem you are interested in, you may also need the files dft surfaces.dat,
poly file, Cr file described below. In dft input.dat, each line on which data is located begins with an @ symbol
signaling the code to begin reading data. Numerous comments are included in the dft input.dat file. These comments
are meant to guide the user in setting up the input file. The input data is split into different logical categories as are
described in the following sections. After the dft input.dat file is read in, it is echoed in the file dft out.lis. When the
code isn’t behaving properly, first check that the code has read the input file as expected. 3 Some degree of error
checking for conflicting inputs is built into the code; however, a complete cross check of parameters is not guaranteed.
Therefore, the user is encouraged to double check input files before submitting jobs.

1Rich - please work up a brief installation guide that describes the directory tree, describes procedure for downloading Tramonto /
the GUI / Trilinos, describe procedure for compile, describe platforms currently supported along with general instructions for porting to
a new platform, describe procedure for compiling Tramonto as a library

2Note that the user can give this file any name, but the job must then be launched by typing: xdft.ARCH input filename.
3Note that the user does not need to make any modifications to the input file to run in parallel.

3

2.1 DIMENSION PARAMETERS

These parameters are used to define what kind of dimensions will be provided in the input file. All
of the calculations are ultimately performed in reduced units as defined by the choice of the user. In
the first example shown below, the user will input all variables in reduced units where this option
is indicated by setting the Length ref, Density ref, Temp, and Dielec ref parameters to numbers less
than zero. In the second example, the user is interested in studying an electrolyte fluid where the
characteristic length will be taken to be 3 Angstroms, the characteristic density will be 18.456995
(units of (mol/L)/σ−3 because the densities will be entered in Molar units, the Temperature is 298
K, and the characteristic dielectric constant will be 80 (representing water). In both cases, the
maximum external field (in kT units) will be set to 10. Note that this parameter sets a lower bound
on the densities that the code will attempt to compute. An ideal gas in an external field has a
density distribution of ρ(r) = ρbexp(−V ext/kT). Clearly very large fields lead to very low densities. For
numerical stability it is often better to replace the DFT equations with ρ = 0 for nodes where the
large external fields exist. However, this is simply a heuristic, and the optimal external field cutoff
may be problem dependent. Therefore this parameter (always reduced by kT) is found on the first
line of the input file.

===
Prototype
Length ref Density ref Temp Dielec ref VEXT MAX

==
Example 1

*************** DIMENSION PARAMETERS ************************
@ -1. -1. -1. -1. 10. Length_ref Density_ref Temp Dielec_ref VEXT_MAX

Example 2

*************** DIMENSION PARAMETERS ************************
@ -1. 18.456995 298. 80. 10. Length_ref Density_ref Temp Dielec_ref VEXT_MAX

===

PARAMETER DEFINITION

Length ref : The characteristic length in the problem of interest. This should usually be set to the diameter of
one of the fluid species of interest. Note that all length entries following in the dft input.dat file should be in the
same units as this characteristic length. If Length ref = −1., all length parameters following should be entered
in reduced units relative to some σref . If Length ref > 0, the code immediately reduces all length parameters,
L (Size x, Esize x, WallPos, WallParam,Sigma ff,Cut ff,Dielec x, X 1D bc,X const mu,Pore rad R IC,Lseg IC,and
Thickness), by L/Length ref . In addition, the parameter Elec param w is scaled by Elec param w × Length ref2

if Type bc elec = 2 because in this case a charge per unit area is entered.

Density ref: The characteristic density is the ratio of 1[unit of interest]/1[σ−3 units]. This parameter will depend
on what type of densities will be entered. Common choices will be g/cc, Molar, and dimensionless (Density ref=-
1). For a conversion from g/cc to the number density, both the characteristic size and the molecular mass of the
species of interest will be needed. For a conversion from Molar to number density, only the characteristic size is
needed. Because the options vary widely, the user is required to compute this conversion factor manually. Given
that Density ref > 0, all densities (Rho w, Rho b, Rho b LBB,Rho b RTF, Scale fac) that follow in the code will
be immediately reduced to ρ/Density ref .

Temp: The Temperature in Kelvin. Or if set to -1, this parameter indicates that all energy parameters (Eps ff
etc) will be entered in units of ε/kT . If Temp > 0, the energy parameters (Eps ff,Eps ww,Eps wf,Vext membrane)
should be entered as ε/k, and they will be immediately reduced to the kT units of the code. Also, if Temp > 0, the

4

electrostatic potential parameters should be entered in mV units. The code then converts to units of φe/kT Also, if
Temp > 0, the electrostatic potential parameters (Elec param w if Type bc elec = 1, Elec pot LBB, Elec pot RTF)
should be entered in mV units. The code then converts to units of φe/kT .

Dielec ref: The characteristic dielectric constant for the problem of interest. Normally should choose the dielectric
constant of the background solvent (e.g. 80 for water). If the characteristic parameters are all -1., and we are doing
a problem with the Coulombics turned on, it is assumed that Temp = 298K, Length ref = 4.25Angstroms, and
Dielec ref = 78.5.

VEXT MAX: The maximum external field to be allowed in the problem. If V ext > V EXT MAX at some nodes in
the mesh then the residual equations are replaced with ρ = 0 at those nodes.

5

2.2 MESH PARAMETERS

These parameters are used to set up the basic variables controlling the size dimension and mesh
spacing of the computational domain. The example below shows a 3-Dimensional (3D) problem
where the computational domain is 4σ×4σ×1σ in size and the mesh spacing is 0.2σ in each dimension.
The system is a square channel with wall-boundary conditions on both sides in both the x and y
coordinate and periodic boundary conditions in the z coordinate.

===
Prototype
Ndim
Size x[idim]
Esize x[idim]
Type bc[idim=0][iside]
Type bc[idim=1][iside]
Type bc[idim=2][iside]

==
Example

*************** MESH PARAMETERS ************************
@ 3 Ndim
@ 4.0 4.0 1.0 Size_x(idim); idim=1,Ndim
@ 0.2 0.2 0.2 Esize_x(idim): idim=1,Ndim
@ -1 -1 Type_bc(x0: left,right) (-1=wall,0=bulk,1=pbc,2=ref; 3=cont)
@ -1 -1 Type_bc(x1: down,up) (-1=wall,0=bulk,1=pbc,2=ref; 3=cont)
@ 1 1 Type_bc(x2: back,front) (-1=wall,0=bulk,1=pbc,2=ref; 3=cont)

===

PARAMETER DEFINITION

iside: The index over the two sides of the computational domain iside={0,1}. The first index, 0, indicates the left
(idim=0), bottom (idim=1) or back (idim=2) of the domain while the second index, 1, indicates the right, top, or
front of the domain respectively.

Size x[idim]: An array that stores the size of the computational domain in each dimension. The units in this field
depend on Length ref (see section on DIMENSION PARAMETERS).

Esize x[idim]: An array that stores the mesh spacing of the computational domain in each dimension. The units in
this field depend on Length ref (see section on DIMENSION PARAMETERS). 4 5

Type bc: An array that stores the types of boundary conditions in each dimension. The possibilities include: bound-
aries that are semi-infinite surfaces where the fluid densities are zero beyond the boundaries (Type bc=-1), boundaries
where the bulk fluid at constant known density is found beyond the boundary (Type bc=0); boundaries that are peri-
odic where the system repeats the unit cell of the computational domain in a periodic fashion (Type bc=1); reflective
boundaries where the next cell is a mirror image of the current cell (Type bc=2); and continuation boundaries where
the last row (2D) or plane (3D) of nodes in a given dimension is assumed to be identical to all subsequent nodes in
that direction (Type bc=3).

4Note: Esize x need not be the same in all dimensions. However, it should be an integer divisor of 1σ. Thus, possible values are 0.5,
0.3333, 0.25, 0.2,0.16666, 0.125, 0.1,0.05 etc.

5Note: Practical values for Esize x range are 0.05σ (1D and 2D atomic fluids DFT), 0.1σ − 0.25σ (2D-3D atomic fluids DFT and
polymer-DFT where molecular structure is of interest), or 0.25σ−0.5σ (for debugging and for 2D & 3D polymer-DFT calculations where
mesoscopic structures are of interest).

6

2.3 FUNCTIONAL SWITCH PARAMETERS

These are switches that control the density functional equations being studied for a given case. The
functional switches are separated into hard sphere, attractive, Coulombic, and polymer functionals.
The switches that are currently available in the code are detailed below. In addition there is a switch
for turning off rigorous hard wall boundaries for comparison with the FasTram code. The example
shows a case where the updated Rosenfeld functional is combined with second order short range
corrections to an electrolyte fluid.

===
Prototype
Type func
Type attr
Type coul
Type poly
Lcompare fastram

===
Example

************ FUNCTIONAL SWITCHES ********************************
@ 1 Type_func (-1=No HS functional,0=Rosen1, 1=Rosen2, 2=LDA Rosen, 3=LDA CS, 4=Lattice)
@ -1 Type_attr (-1=No attractions,0=strict MF)
@ 1 Type_coul (-1=No coulomb, 0=strict MF, 1=include 2nd order corrections)
@ -1 Type_poly (-1=No polymer, 0-2 different polymer formulations)
@ 0 Lcompare_fastram

===

PARAMETER DEFINITION

Type func: The type of hard sphere functional desired for the calculation.
Option -1: turn off the hard sphere functional - do this for ideal gas, Poisson-Boltzmann, or polymer calculations.
Option 0: use the original Rosenfeld functional

Φ = −ρ̄0ln(1− ρ̄3) +
ρ̄1ρ̄2

1− ρ̄3
+

1
24π

ρ̄3
2

(1− ρ̄3)2

− ρ̄V 1 · ρ̄V 2

1− ρ̄3
− 1

8π
ρ̄2(ρ̄V 2 · ρ̄V 2)

(1− ρ̄3)2
. (1)

Option 1: use an updated version of Rosenfeld’s functional with corrected zero dimensional cross-over behavior.

Φ = −ρ̄0ln(1− ρ̄3) +
ρ̄1ρ̄2

1− ρ̄3

− ρ̄V 1 · ρ̄V 2

1− ρ̄3
+

(ρ̄2 − ρ̄V 2 · ρ̄V 2)
3

24π(1− ρ̄3)2
. (2)

Option 2: use a Local Density Approximation based on the Percus-Yevik fluid (this is compatible with the Rosenfeld
functionals for a bulk fluid).
Option 3: use a Local Density Approximation based on the Carnahan-Starling fluid.
Option 4: use a simple lattice approximation (3D fluid only).
—————————————————————————————————————-

Type attr: The type of attractive functional desired for this calculation.
Option -1: turn off attractions - do this for hard sphere, hard charged sphere, or hard polymer systems.

7

Option 0: use strict mean field attractions.

Fatt =
∑

i

∑
j

∫
dr

∫
dr′ ρi(r)ρj(r′)uatt

ij (|r − r′|), (3)

At this time, the attractive interactions, uatt are based on a cut and shifted 12-6 Lennard-Jones fluid where
u(r) = uLJ − uLJ(rcut), and

uLJ
ij (r) = 4εij

[(σij

r

)12

−
(σij

r

)6
]
, (4)

The cutoffs are typically rcut = 2.5σ − 10σ. Furthermore, attractive interactions are treated as a Weeks-Chandler-
Anderson perturbation on the hard sphere fluid. This attractive functional could be changed by (1) considering
higher order corrections using g(N)(r) or (2) considering different attractive perturbations such as a Yukawa fluid.
These modifications would involve modification of both the thermodynamics routines in Tramonto and the attractive
stencil function on which integrations are based.
—————————————————————————————————————-

Type coul: The type of functional used for Coulombic systems.
Option -1: turn off Coulombics - do this for any neutral system.
Option 0: include only the mean field term

Felec =
∑

i

∫
drqiρi(r)ψ(r). (5)

Option 1: also include the 2nd order correction using the restricted primitive model of Tang and Davis papers.

Felec =
∑

i

∫
drqiρi(r)ψ(r) +

∑
i

∑
j

∫
dr

∫
dr′ ρi(r)ρi(r′)∆cij(|r − r′|), (6)

Option 2: include the 2nd order correction above using a ∆c(r) that can is computed elsewhere (e.g. from Ornstein-
Zernike calculations or quantum mechanical calculations).
—————————————————————————————————————-

Type poly: There are three formulations of the polymer-DFT code that have different numerical properties. Below
we describe the residual equations solved in each case.
Option -1: turn off polymer functionals.
Option 0: In this case, the variables solved in the code (for the case of a 1-component homogeneous polymer) are

xα
1 (r) = e−Uα(r)/kT (7)
xα

2 (r) = ρα(r) (8)
xi,j

3 (r) = Gj
i (r) (9)

where there are Nblock x1 and x2 variables, and there are twice the number of bonds of thex3 variables to solve for.
In this case, the residual equations solved by the code are

R0 = 0 = ln(x1(r)) + V (r)/kT −
∫

V

dr′c(|r− r′|)(x2(r)− ρbulk) (10)

R1 = 0 = xα
2 (r) ∗ xα

1 (r)− ρα

Nα

{Nα}∑
i

 Ni∏
β=1

x
i,j(β)
3 (r)

 (xα
1 (r))−(Ni−2)

. (11)

Ri,j
2 (r) = 0 = xi,j

3 (r)− x
α(i)
1 (r)×∫

dr′

Nj :k(β) 6=i∏
β=1

x
j,k(β)
3 (r′)

 (
x

α(j)
1 (r′)

)−(Nj−2)

wi,j(r − r′) (12)

8

Option 1: In this option, the Boltzman factor is left in the denominator. The unknowns are the same as the previous
case, but the residuals solved are now

R1 = 0 = xα
2 (r)− ρα

Nα

{Nα}∑
i

 Ni∏
β=1

x
i,j(β)
3 (r)

 (xα
1 (r))−(Ni−1)

. (13)

Ri,j
2 (r) = 0 = xi,j

3 (r)/xα(i)
1 (r)−∫

dr′

Nj :k(β) 6=i∏
β=1

x
j,k(β)
3 (r′)

 (
x

α(j)
1 (r′)

)−(Nj−2)

wi,j(r − r′) (14)

Option 2: Finally, in this option, the unknowns are

xα
1 (r) = e−Uα(r)/kT (15)
xα

2 (r) = ρα(r) (16)
xi,j

3 (r) = Qj
i (r) = Gj

i/e
−Ui (17)

and the residuals are

Rα
1 (r) = 0 = xα

2 (r)− ρ

Nα
xα

1 (r)
{Nα}∑

i

 Ni∏
β=1

x
i,j(β)
3 (r)

 (18)

Ri,j
2 (r) = 0 = xi,j

3 (r)−∫
dr′

Nj :k(β) 6=i∏
β=1

x
j,k(β)
3 (r′)

 (
x

α(j)
1 (r′)

)
wi,j(r − r′) (19)

While all three options give identical results, they are somewhat different numerically and differently behaved
with a given initial guess. At times one may have superior stability over the others.

Lcompare fastram: When hard surfaces are studied, one must be careful to treat the discontinuity in density at the
surface properly in order to obtain the famous sum rule that the force on the wall is equal to the sum of the densities
at the surface. In 3D cases, the required care is perhaps not worth the effort since systems with continuous potentials
are ultimately of interest. Thus in development of our new fourier space code FasTram (not yet released), we have
not done rigorous boundary checking for hard surfaces. In order to perform exact comparisons between Tramonto
and FasTram, it is necessary to eliminate the boundary checking Tramonto would normally do for hard surfaces.
This switch when set to 1 (TRUE) will eliminate rigorous boundary checking for hard surfaces to enable comparison
of the two codes. For most users, this switch should be set to 0.

9

2.4 SURFACE PARAMETERS

These parameters are used to set up the geometric parameters defining the surfaces of interest. The
example shows the case of a square channel where the channel is created from two types of planar
surfaces. The two types have different orientations.

===
Prototype
Nwall type Nwall Nlink Lauto center
Xtest reflect TF[ilink][idim]
Surf type[iwall type]
Orientation[iwall type]
WallParam[iwall type]
WallParam2[iwall type]
WallParam3[iwall type]

==
Example

*************** SURFACE PARAMETERS ************************
@ 2 4 3 0 Nwall_type Nwall Nlink Lauto_center
@ 0 0 0 0 0 0 0 0 0 Xtest_reflect_TF
@ 0 0 Surf_type[iwall_type]; iwall_type=0,Nwall_type
@ 0 1 Orientation[iwall_type]; iwall_type=0,Nwall_type
@ 1.0 1.0 WallParam[iwall_type]; iwall_type=0,Nwall_type
@ 1.0 1.0 WallParam2[iwall_type]; iwall_type=0,Nwall_type
@ 1.0 1.0 WallParam3[iwall_type]; iwall_type=0,Nwall_type

===

PARAMETER DEFINITION

ilink: Index over the number of independent compound (or linked) surfaces in the system, Nlink. ilink={0,Nlink-1}

iwall type: Index over the different types of surfaces in the system. iwall type={0,Nwall type-1}.

Nwall type: The number of different surface types in the system. Two walls are of the same type if all of the
parameters defining them are the same.

Nwall: The total number of surfaces in the system.

Nlink: The number of independent compound surfaces in the system.

Lauto center: Have the code automatically center the surfaces in the computational box. This may facilitate applying
bulk boundaries or viewing the results of the simulation when the initial coordinates are not well centered. Taking
coordinates from the Protein Data Bank is one case where the surface (atomic) coordinates may not be well centered.

Xtest reflect TF: A logical array (0=FALSE, 1=TRUE) that indicates how to treat surfaces that exist in adjoining
domains across reflective boundaries. TRUE indicates that the surfaces in the next domain are different than those
in the computational domain, while FALSE indicates that they are extensions of the surfaces in this domain. For
example, consider a cylindrical surface with the long axis parallel to the z-coordinate of the system and assume all
boundaries of the 3D domain are reflective. In the x and y directions, there are independent surfaces beyond the
boundaries while in the z direction, the same cylinder is extended. These situations must be treated differently when
the surface-fluid interactions are hard.

Surf type: This array stores the basic shapes of the surfaces. Several choices are currently possible as outlined in Table
2.4, and addition of new surfaces in the code is straightforward. The difference between colloidal cylinder/spheres

10

Surf type flag Ndim WallParam WallParam2 WallParam3 Orientation
Infinite Planar Wall 0 1-3 half thickness N/A N/A Surf Normal
Finite Planar Wall 1 1-3 half thickness half thickness half thickness Surf Normal
Colloids (cyl/sphere) 2 2-3 radius N/A N/A N/A
Atoms (spheres) 3 3 radius N/A N/A N/A
Point Atoms 4 3 radius N/A N/A N/A
Cylinder - finite length 5 3 radius length N/A Long Axis
Cyl/Periodic 6 3 mean radius amplitude period length Long Axis
Pore (cyl-2D/sphere-3D) 7 2-3 radius N/A N/A N/A
Finite Pore (slit-2D/cyl-3D) 8 2-3 pore radius length N/A Long Axis
Tapered Pore 9 2-3 pore radius (lbb) pore radius (rtf) length Long Axis

Table 1: Details of possible surface types. The columns are a description of the surface type, the flag entered in
dft input.dat to select a given surface, the number of dimensions possible for a given surface type, the meanings of
various wall parameters, and the definition of the orientation parameter. The notation lbb refers to the left(idim=0),
bottom (idim=1) or back (idim=2) radius of the tapered pore while rtf refers to the right, top, or front dimension.

and atomic cylinder/spheres is that in the former case the WallParam is used to define the radii of the surfaces while
in the latter case, the wall σw (Sigma w) parameter entered later defines the surface diameter.

Orientation: This parameter identifies the orientation of the surface as detailed in Table 2.4. This parameter is
always a direction (Orientation={0,2}). For example it gives the direction of the surface normal in the case of an
infinite planar surface. If no orientation is needed, any number may be present in the input file.

WallParam, WallParam2, WallParam3: Arrays that store the parameters needed to describe the geometry of a
given surface type. The parameters are given in Table2.4. Each surface type must have an entry for each type of
WallParam although some wall types only need one parameter. In these cases any number may appear in the list
since these numbers are never used. It is important to note that TRAMONTO needs to read in the arrays in their
entirety so entries may not be omitted from the input file.

11

2.5 POTENTIAL TYPE PARAMETERS

These switchs are used to indicate the type of wall-fluid and wall-wall interaction potential models is
to be used in the calculation. Note that the wall-fluid interactions may be different for different wall
types. Also note that the specifics of a desired potential must be entered in the appropriate function
in the file dft potentials.c. Below we enumerate some options that have been used in the past.

===
Prototype
Ipot wf n[iwall type]
Ipot ww n[iwall type][jwall type]

===
Example

*************** POTENTIAL TYPE SELECTIONS ************************
@ 1 2 Ipot_wf_n[iwall_type]

(0=No_wall-fluid,
1=Hard_wall,
2=1D potential in 1D calculation,
3=1D potential in 2D or 3D calculation - based on Xmin[iwall],
4=1D potential in 2D or 3D calculation - based on Xmin[Orientation]
5=LJ12_6 integrated,
6=ATOMIC potential (LJ 12-6)

@ -2 Ipot_ww_n[iwall_type][jwall_type]
-2 : set entire array to 0
-1 : set entire array to 1
0 : no interactions
1: compute interactions of atom centers (LJ+COULOMB)

===

PARAMETER DEFINITION

Ipot wf n: An array of switches indicating the type of neutral interactions between the fluid particles and the surfaces.
The options are:
option 0: none; where

V ext(r) = 0, (20)

option 1: a hard wall where

V ext(r) = ∞ if |r−Rs| < WallParam+ σwi/2,
V ext(r) = 0 otherwise (21)

where Rs denotes the center of the surface of interest and WallParam indicates the appropriate geometric charac-
teristics of the surface. For example given a cylindrical surface in a 2D problem, the external field will be infinite for
all mesh points within a distance of the cylinder radius plus one-half the wall fluid interaction diameter.

option 2: a 1-Dimensional potential used in a 1-Dimensional calculation.
This case has been most frequently used. Some examples include the cut and shifted Lennard-Jones 9-3 wall for

1D systems of infinite planar walls where V ext(z) = V LJ − V LJ(zcut), and

V LJ(z) =
4πεwf

9

(
σwf

σw

)3 [
1
5

(σwf

z

)9

− 2
3

(σwf

z

)3
]
, (22)

12

another possibility simply renormalizes the above potential to be

V LJ(z) =

√
2
5
εwf

[
1
5

(σwf

z

)9

− 2
3

(σwf

z

)3
]
. (23)

Finally, we have also used an exponential potential defined as

V (z) = −εwfe
−z/σwf (24)

Implementing a new external field is straightforward, and the code should be added to the routines Vext 1D and
Vext 1D dash in the file dft potentials.c.

option 3: a 1-Dimensional potential used in a 2D or 3D calculation. The algorithm finds the minimum distance
from each surface and uses that distance, x, to compute the external field V(x).

option 4: another 1-Dimensional potential used in a 2D or 3D calculation. The algorithm finds the distance to the
nearest surfaces in the Orientation directions. Those distances, x are used to compute the external field V(x).

option 5: a numerically integrated cut and shifted 12-6 Lennard-Jones surface where V ext(r) = V LJ − V LJ(rcut)

V LJ(r) =
∫
drs4εwf

[(
σwf

(|r−Rs|)

)12

−
(

σwf

(|r−Rs|)

)6

−
(
σwf

rcut

)12

+
(
σwf

rcut

)6
]

(25)

and the integral runs over the volume of the surface, rs, of interest (in 3D space). In the limit rcut →∞ (option 4)
and zcut →∞ (option 2) when the surface is a smooth infinite planar wall, the external fields are identical.

option 6: external field that assumes the fixed surfaces are atoms. In this case, we use

V LJ(r) =
∑
surf

4εwf

[(
σwf

(|r−Rs|)

)12

−
(

σwf

(|r−Rs|)

)6

−
(
σwf

rcut

)12

+
(
σwf

rcut

)6
]

(26)

where the sum runs over all atomic surfaces in the system. This option is most helpful for studying (macro)molecular
surfaces.

Ipot ww n: An array of switches indicating the type of neutral interactions between the surfaces in the system. Often
we leave these terms out of the calculation. In that case the flag -2 should be set in the first entry which then simply
zeros the array. If we do compute the interactions, it is likely for systems composed of collections of atoms with
perhaps many different types. In this case we want the entire array set to 1. The -1 flag will do this automatically.
To compute some but not all surface interactions, manually set up the array.

13

2.6 INTERACTION ENERGY PARAMETERS

These parameters describe the properties of the fluid and wall particles with respect to their interac-
tions. The example shows input for a three component 1:1 electroltye solution interacting with a hard
charged wall. Each parameter is described in more detail below for both atomic fluids and polymeric
fluids.

===
Prototype
Ncomp Mix Type
Mass[icomp]
Charge f[icomp]
Pol[icomp]
Sigma ff[icomp,jcomp]
Eps ff[icomp,jcomp]
Cut ff[icomp,jcomp]
Bond ff[icomp,jcomp]
Rho s[iwall type]
Sigma ww[iwall type,jwall type]
Eps ww[iwall type,jwall type]
Cut ww[iwall type,jwall type]
Sigma wf[icomp,iwall type]
Eps wf[icomp,iwall type]
Cut wf[icomp,iwall type]

===
Example

************ INTERACTION ENERGY PARAMETERS *******************************
@ 3 0 Ncomp Mix_Type

Ncomp = (number of components) OR for polymers
Ncomp=Nblock_tot (number of polymer block groups)

Mix_Type = 0 for L-B rules, =1 for manual input

--------FLUID-FLUID INTERACTION PARAMETERS---------
@ 1. 1. 1. Mass(icomp):icomp=1,Ncomp (Nblock_tot)
@ 0. 1. -1. Charge_f(icomp):icomp=1,Ncomp (Nblock_tot); Valence
@ 0. 0. 0. Pol(icomp):icomp=1,Ncomp (Nblock_tot); Polarization Parameter

@ 1. 1. 1. Sigma_ff(icomp,jcomp):(i,j)comp=1,Ncomp
@ 1. 1. 1. Eps_ff(icomp,jcomp):(i,j)comp=1,Ncomp
@ 2.5 2.5 2.5 Cutoff_ff(icomp,jcomp):(i,j)comp=1,Ncomp
@ 1. 1. 1. Bond_ff(icomp,jcomp):(i,j)comp=1,Ncomp

----------WALL-WALL INTERACTION PARAMETERS---------
@ 1. Rho_s[iwall_type]: density of atoms in surface
@ 1. Sigma_ww[iwall_type][jwall_type]:
@ 9. 9. 9. Eps_ww[iwall_type][jwall_type]:
@ 2.5 2.5 2.5 Cut_ww[iwall_type][jwall_type]:

----------WALL-FLUID INTERACTION PARAMETERS---------
@ 1.0 Sigma_wf[i][j] [i=0,Ncomp-1][j=0,Nwall_type-1]
@ 1.0 Eps_wf[i][j]
@ 1.0 Cut_wf[i][j]

14

===

PARAMETER DEFINITION

icomp, jcomp: Index over the number of fluid components, Ncomp in the system.

iwall type, jwall type: Index over the number of wall types, Nwalltype in the system.

Ncomp: Number of fluid components. For polymer fluids enter the total number of different block types in the
system. So, for the case of a one component diblock copolymer, there are two segment types, and Nblock tot should
be 2. All the following arrays then have a length of {Nblock tot,Nblock tot}.

Mix Type: Type of mixing rules to be applied for a given problem. if Mix type = 0 then the Lorentz-Berthlot
rules will be applied. In these cases, only the diagonals of the various arrays must be entered in this section. Then
the code will calculate the off-diagonal entries. They are σij = 0.5(σii + σij), bondij = 0.5(bondii + bondij), and
εij = √

εiiεjj . In addition, the wall-fluid interaction energy parameters will be calculated as σwf = 0.5(σwwσff)
and εwf = √

εwwεff . Finally, the cut-off distance for the wall-fluid interaction is taken to be rwf
c = rff

c ∗ σwf .
If Mix type is set to 1, then every element of the arrays must be manually entered for fluid-fluid, wall-wall, and
wall-fluid parameters. Note that depending on what types of fluid and surfaces are being studied many of these
parameters may be irrelevent so any number may be found in the input file.

Mass: Array containing the mass of each species. Used if one wants to include the deBroglie wavelength term in the
chemical potential expressions. Otherwise set to 1.0.

Charge f: Array containing the valence associated with each component. Charges are only read in if the fluid is
Coulombic.

Pol: Array containing the Polarization parameter. Note that Type coul=3 for this array to be read or used.

Sigma ff: Array containing interaction diameters of various fluid-fluid interactions. The dimensions depend on the
Length ref parameter set earlier. These parameters are irrelevent for the ideal gas and Poisson-Boltzmann electrolyte
cases. Note that all arrays, [i][j], are entered in the following order: [i][j]: [0][0],...,[0][Nj-1]; [1][0],...,[1][Nj-1]; ...[Ni-
1][0],...,[Ni-1][Nj-1].

Eps ff: Array containing interaction energy parameters associated with Lennard-Jones fluid-fluid interactions. The
dimensions depend on the Temp parameter set earlier. These parameters are only read in if Lennard-Jones attractions
are included in the calculation.

Cut ff: Array containing the cut-off lengths for the Lennard-Jones fluid-fluid interactions. The units depend on the
Length ref parameter discussed earlier. These parameters are only read in if Lennard-Jones attractions are included
in the calculation.

Bond ff: Array containing bond lengths between various species pairs for polymer calculations. Making the bonds
shorter than the corresponding σ is an overlapping sphere model.

Rho s: An array that contains the density of the solid surfaces of interest. The units depend on the Density ref
parameter set earlier.

Sigma ww: Array containing interaction diameters of various surface types with one another.

Eps ww: Array containing interaction energy parameters associated with Lennard-Jones wall-wall interactions.

Cut ww: Array containing the cut-off lengths for the Lennard-Jones wall-wall interactions.

Sigma wf: Array containing interaction diameters of various fluid-surface interactions. These are only relevent if
Mix Type = 1.

Eps wf: Array containing interaction energy parameters associated with Lennard-Jones wall-fluid interactions.

Cut wf: Array containing the cut-off lengths for the Lennard-Jones wall-fluid interactions.

15

2.7 POLYMER INPUT PARAMETERS

Here is where necessary information for polymer runs is entered. 6 The example below shows an 8-8
block copolymer. Note that the c(r) file needs to be generated using PRISM as is described later in
this document. Further details on the polymer-DFT algorithms and input are given in Chapter 5.

===
Prototype
Npol comp
Nblock[pol number]
Block[iblock tot]
Block type[iblock tot]
poly file
NCrfiles Crfac Cr file Cr file2
Cr rad
Gauss a

===
Example

************* POLYMER INPUT PARAMETERS **
@ 1 Npol_comp: Number of (co)polymer components
@ 2 Nblock[pol_num]: Number of blocks in each copolymer
@ 8 8 block[pol_num][iblock]: Number of segments in each block
@ 0 1 block_type[pol_num][iblock]: Segment types in each block (start w/0, don’t skip)
@ star_4444_sym poly_file: File containing polymer connectivity
@ 2 0.2 crf8.8_0.7 crf8.8_0.6 NCrfiles Crfac Cr_file Cr_file2
@ 1.0 Cr_rad: c(r) radius (units of sigma)
@ 0.9814 Gauss_a: Aspect ratio (gauss bl/sigma)

===

pol num: An index that runs over all the polymer components in the system. (e.g. pol num=(0,Npol comp-1)).

iblock: An index that runs over all the blocks in a given polymer component. (e.g. iblock=(0,Nblock[pol num]-1)).

Npol comp: Enter the total number of (co)polymer components in the mixture of interest.

Nblock[pol number]: Enter the number of distinct blocks in each of the polymers of interest.

block[pol num][iblock]: Enter the number of polymer segments in each block of interest.

block type[pol num][iblock]: Enter the type of each block of segments. These must be indexed starting with zero, and
must run over all the polymer components and blocks of interest. The order for entering this array is [0][0], [0][1], ...[0][Nblock−
1[0]], [1][0]....[1][Nblock − 1[1],

poly file: The file that contains polymer connectivity and bond symmetries if applicable. See the discussion in the
section 4.

NCrfiles: The number of direct correlation function files to be read in. Only 1 or 2 are allowed. This is to facilitate
careful continuation between disparate direct correlation functions.

Crfac: The multiplicative factor by which the first direct correlation function will be multiplied. This should be
between 0 and 1. The second c(r) will then be multiplied by (1 − Crfac), and the two direct correlation functions
will be mixed.

Cr file and Cr file2: These files contain c(r) data from PRISM calculation. See a further discussion in the section 5.

6Note: If the polymer functionals are not turned on, this section will be skipped.

16

Cr rad: This contains the range of c(r) in units of σ, the segment size.

Gauss a:

17

2.8 SEMI-PERMEABLE SURFACE PARAMETERS

These parameters indicate whether a given surface type is semi-permeable and to what degree. We
assume that semi-permeable membranes have a constant (non-infinite) potential in their interior. The
lower this potential, the more material can be adsorbed in the surface.

===
Prototype
Lsemiperm[iwall type][icomp]
Vext membrane[iwall type][icomp]

===
Example

************** SEMI-PERMEABLE SURFACE PARAMETERS *****************
@ -2 Lsemiperm[iwall_type][icomp]; [0][0],[0][1],...[0][Ncomp-1][1][0]...

(-2 in first entry will set array to all zeros - FALSE)
(-1 in first entry will set array to all ones - TRUE)

@ 0.0 Vext_membrane[iwall_type][icomp]; [0][0],[0][1],...[0][Ncomp-1][1][0]...
(array automatically zeroed if Lsemiperm first entry is -2

===

PARAMETER DEFINITION

Lsemiperm: An array of logicals (0=FALSE,1=TRUE) that indicates if any wall type is permeable to any of the
fluid components in the system. The example shows the order in which the array must be entered in the file. The
entire array is set to FALSE if the first entry in the input file is -2. The entire array is set to TRUE if the first entry
in the input file is -1.

Vext membrane: The non-infinite external field associated with each of the semi-permeable surfaces. Note that if the
first entry in Lsemiperm is -2 then this array will all be set to zero, and will not be used by the code.

18

2.9 STATE POINT PARAMETERS

This section sets the state point (the density) of the bulk fluid.
===

Prototype
Rho b[icomp]

===
Example

************** STATE POINT PARAMETERS **
@ 0.001 0.001 Rho_b[icomp], icomp = 0,Ncomp-1 (or Npol_comp for polymers)

===

PARAMETER DEFINITION

Rho b: The bulk number density (units of ρσ3
ref) for each fluid component in the system. For polymers, enter the

density of each polymer component (Npol comp). The code will automatically determine the density per segment
type.

19

2.10 CHARGED SURFACE BOUNDARY CONDITION PARAMETERS

This section details the properties of charged surfaces in the system. A variety of options are possible
from uniform constant surface charge boundaries to locating specific charged sites on a boundary.
The example shows a case where there are two types of surfaces each with constant surface charge
(note that the magnitude of the surface charge is read in dft surfacess.dat. In addition, there is one
local charge spread over a diameter of 0.5σref located at the center of the domain.
===

Prototype
Type bc elec[iwall type]
Nlocal charge
Charge loc[icharge]
Charge Diam[icharge]
Charge x[icharge][idim]
Charge type atoms Charge type local

===
Example

*************** CHARGED SURFACE BOUNDARY CONDITIONS ***************************
@ 2 2 Type_bc_elec[iwall_type]
@ 1 Nlocal_charge \# of local charges

(-1 for linear profile of charge between
two points aligned with principle axes. !!!)

@ 1.0 Charge_loc[0,Nlocal_charge-1]
@ 0.5 Charge_Diam[0,Nlocal_charge-1]
@ 0.0 0.0 0.0 Charge_x[0,Nlocal_charge-1][idim];

[0][0];[0][1];[0][2];[1][0]..
@ 0 0 Charge_type_atoms Charge_type_local :: values 0,1,2

===

PARAMETER DEFINITION

Type bc elec: This array (length Nwall type) stores the type of boundary condition for charged systems. Possible
choices and the associated flags are: no charge (0), constant potential (1), constant surface charge (2), and charged
atoms (3).

Nlocal charge: The number of local volumetric charges that exist within the computational domain. These charges
may or may not be located within boundaries of surfaces from which solvent is precluded. They just represent source
terms in the system of equations. The flag of Nlocal charge= −1 indicates that two charges at two locations in the
domain will be entered and there should be a linear distribution of charge between these two points.

Charge loc: This array (of length Nlocal charge) stores the total charge associated with each site of local charge.

Charge diam: This array (of length Nlocal charge) stores the diameter over which a given local charge should be
spread. If Charge diam is set to zero, all of the local charge will be put in one element of the domain.

Charge x: This array (of length [Nlocal charge][Ndim]) stores the positions of the centers of the local volumetric
sources of charge. The example shows the order in which this array is read into the input file.

Charge type atoms and Charge type local: This parameter indicates how atomic or local charges are to be smeared
in the domain. The options are:

• Charge type xxx=0 : Smear the charges over the indicated diameter. For a local charge this would be given by
Charge diam. For an atomic charge, this would be indicated by Σww.

• Charge type xxx=1 : Approximate point charges by putting all the charge in one element at the center of the
atom (given by WallPos[]) or local charge (given by Charge x).

20

• Charge type local=2 : Smear the charge over every element in the domain. This is a uniform background charge.
It is only available for the local charges - not the atoms.

21

2.11 DIELECTRIC CONSTANT PARAMETERS

This section defines how dielectric constants will be treated in the system. 7

===
Prototype
Type dielec
Dielec bulk Dielec pore Dielec X
Dielec wall[iwall type]

===
Example

************** DIELECTRIC CONSTANTS ************************************
@ 0 Type_dielec
@ 1.0 0.5 2.0 Dielec_bulk Dielec_pore Dielec_X
@ 1.0 1.0 1.0 Dielec_wall[i] i=1,Nwall_type

===

PARAMETER DEFINITION

Type dielec: This flags sets how dielectric constants will be treated for a given run. Options are: set ε constant
everywhere in domain including surfaces (option 0), give surfaces and fluid different dielectric constants (option 1),
give pore fluid and bulk fluid different dielectric constants (option 2), or set constant ε in walls, but make it a function
of density in the fluid (option 3). All dielectric constants are read in as a function of the reference value, εref . For
water, εref = 78.

Delec bulk: The ratio ε/εref in the bulk fluid. This should be 1.0 provided the bulk is used as the reference fluid.

Dielec pore: The ratio ε/εref in the pore fluid.

Dielec X: The distance from the surfaces that will be considered pore fluid.

Dielec wall[]: An array (of length Nwall type) that stores the ratio ε/εref of each surface in the system.

7This section is only read in if Type coul > −1.

22

2.12 DIFFUSION PARAMETERS

This section sets boundary conditions for steady-state transport calculations. In these cases, there is
a chemical potential gradient in the system, so one bulk density state point is not sufficient to define
the system.
===

Prototype
Lsteady state
Grad dim L1D bc X 1D bc
x const mu
Geom Flag Nseg
Radius L Radius R Length
Rho b Left[icomp]
Rho b Right[icomp]
D coef[icomp]
Elec pot L Elec pot R
Velocity

===
Example

************* DIFFUSION PARAMETERS ********************************
@ 0 0 Lsteady_state ($0=$equilibrium problem, $1=$steady state problem)
@ 0 Grad_dim direction of gradient (0=x, 1=y, 2=z)
@ 5.0 x_const_mu (on both sides of domain).
@ 0 1 Geom_Flag; ($0=$unit area;$1=$cyl pore;$2=$vary pore) Nseg (\# pore segments)
@ 2.5 0.75 4. Radius_L, Radius_R, Length
@ 0.141 0.312 Rho_b_Left[Icomp] B.C. on left or bottom or back
@ 0.312 0.141 Rho_b_Right[Icomp] B.C. on right or top or front
@ 0.32 0.32 4.e-6 4.e-7 D_coef[icomp] Diff Coeff per component (cm2/sec)
@ 0. 0.0 Elec_pot_L, Elec_pot_R B.C. on elec. potential lbb and rtf
@ -0.05 -0.035 Velocity

===

PARAMETER DEFINITION

Lsteady state: Logical (0 =FALSE, 1 =TRUE) that indicates whether this run is a steady state calculation with
inhomogeneous boundary conditions. If Lsteady state= 0, the remainder of the lines in this section are not read in.

Grad dim: This constant indicates in which dimension the chemical potential gradient exists. Currently, the code is
only set up to allow inhomogeneous boundary conditions in one dimension. The options are 0 = x, 1 = y, and 2 = z.

L1D bc: A logical (0=FALSE : 1=TRUE) indicating whether or not a 1D boundary condition should be applied at
the ends of a 2D or 3D box in the Grad dim direction. This is useful when studying electrolytes and the Debye length
is significantly longer than the local structue near a surface at the center of the box. Then much of the computational
cost of increasing box size to account for the proper decay can be mitigated.

X 1D bc: The distance over which the 1D boundary should be applied.

x const mu: This constant indicates the distance in the Grad dim dimension where the chemical potential is held
constant. This constant region will be a bulk fluid far enough away from any surfaces in the transport region.

Geom Flag: This flag indicates if the area of a pore varies in the Grad dim dimension. This switch is only active for
1D calculations.

Nseg: This constant sets how many pore segments of different geometry there are for a given pore. For example if
there is a cylindrical pore with tapered ends, there would be three segments.

23

Radius L: An array of length Nseg that stores the radius of the left (or bottom or back) side of the pore segment.

Radius R: An array of length Nseg that stores the radius of the right (or top or front) side of the pore segment.

Length: An array of length Nseg that stores the length of each pore segment.

Rho b Left: An array of length Ncomp that stores the constant bulk densities on the left (or bottom or back) boundary
condition. Note that for these inhomogeneous problems, only constant bulk boundaries (with different values) are
allowed.

Rho b Right: An array of length Ncomp that stores the constant bulk densities on the right (or top or front) boundary
condition. Note that for these inhomogeneous problems, only constant bulk boundaries (with different values) are
allowed.

D coeff: An array of length Ncomp that stores the diffusion coefficient for each species in the problem of interest.

Elec pot L: This constant stores the electric potential on the left (or bottom or back) side of the domain.

Elec pot R: This constant stores the electric potential on the right (or top or front) side of the domain.

Velocity: This constant accounts for center of mass motion in transport in these steady state problems.

24

2.13 STARTUP CONTROL PARAMETERS

These settings determine how a given run will be started. The variety of options is optimized for a
variety of problems from studying wetting to studying steady state transport.
===

Prototype
Iliq vap
Iguess
Nsteps
Orientation step[istep]
Xstart step[istep]
Xend step[istep]
Restart
Rho max

===
Example

************** STARTUP CONTROL PARAMETERS ********************************
@ -1 Iliq_vap (-2=don’t compute coexistence

-1=compute coexistence,
1=compute a Wall-Vapor profile,
2=compute a Wall-Liquid profile
3=compute a Liquid-Vapor profile)

@ -3 Iguess
-3: Constant Bulk Density
-2: Constant liquid coexistence density
-1: Constant vapor coexistence density
0: rho_bulk*exp(-Vext/kT)
1: rho_liq*exp(-Vext/kT)
2: rho_vap*exp(-Vext/kT
3: step function
4: chopped profile: to rho_bulk
5: chopped profile: to rho_liq
6: chopped profile: to rho_vap
7: chopped profile: to rho_step
8: linear profile

@ 1 Nsteps
@ 0 Orientation_step[istep]
@ -5.0 -5.0 Xstep_start[istep]
@ 5.0 5.0 Xstep_end[istep]
@ 0.1 0.1 Rho_step[icomp][istep]

@ 0 Restart (0=no, 1=yes, 2=yes, but w/ step function, 3=yes for
densities but not elec.pot or chem.pot.)
(if 1 : dft_dens.dat must exist)

@ 1000. Rho_max

===

PARAMETER DEFINITION

Iliq vap: Indicates whether this run is to use the entered state point parameters, Rho b or whether the profile should
be set up for a fluid at liquid-vapor coexistence. In the latter case, the Temp parameter is used to first find coexistence,
and then the bulk densities/chemical potentials are set to coexistence values. The choices are: off coexistence and

25

don’t calculate coexistence properties (-2); off coexistence, but want to calculate the bulk coexistence properties
(-1), at coexistence on the vapor side (1), at coexistence on the liquid side (2), doing a liquid-vapor interface (3).
This parameter is particularly useful when performing wetting studies or calculating contact angles. Liquid-vapor
coexistence can only be calculated at this time for Lennard-Jones fluids of one component. So for all other systems,
set Iliq vap to -2.

Iguess: Iguess: This parameter sets the initial guess type for cases where there is no restart file. There are many
options, the best of which depends on the type of run being performed. The possibilities are:
•a constant density with ρ = ρb (option -3) , ρ = ρliq

coex (option -2), or ρ = ρvap
coex (option -1);

•an ideal gas profile with ρ = ρbe
(−Vext/kT) (option 0) , ρ = ρliq

coexe
(−Vext/kT) (option 1), or ρ = ρvap

coexe
(−Vext/kT)

(option 2);
•a stepped profile defined in more detail by the parameters Nsteps, Orientation step, Xstep start, Xstep end, and
Rho step. (option 3)
• a chopped profile where an old density profile is read in, and then the profile is chopped of at a distance Xstep start[0]
from the surfaces. The density to which the profile is stepped may be ρb (option 4) , ρliq

coex (option 5), ρvap
coex (option

6), or Rho step[0](option 7).
• linear profile between ρLeft and ρRight (option 8) defined in the steady-state diffusion section, Use this option for
steady-state problems with inhomogeneous boundary conditions.

Restart: This switch controls whether the run will start from a new initial guess or from an old density file(s). The
files that are needed to perform a restart are: dft dens.dat for atomic systems, and in addition dft dens.datg for
polymer calculations. In order to do binodal calculations, the files dft dens2.dat and dft dens2.datg will be required.
• 0: No restart file: use guess indicated by Iguess,Iguess2.
• 1: Restart from default files.
• 2: Restart from files, but step the profile as indicated by Iguess parameter
• 3: Restart density unknowns only. Set nonlocal densities, ρ̄(r), electric potential, ψ(r)e/kT , or G(r) variables to
simple initial guesses.
• 4: Restart solution fields from files. Also restart external field from the files dft vext.dat and dft zeroTF.dat.
• 5: Use a 1-dimensional solution field as an initial guess for a 2 or 3 dimensional calculation. The 1-dimensional
solution is simply replicated in the y and/or z directions.

Rho max: This is the maximum density allowed for continuation from an old profile when MESH continuation is
performed. Again very large densities can be difficult to converge.

26

2.14 OUTPUT FORMAT PARAMETERS

These parameters just set the format for various output files and parameters in the code. The optimal
output format usually depends on what one is trying to study.
===

Prototype
Lper area Lcount reflect Lprint gofr Lprint uww
Print rho type
Print rho switch Print mesh switch
IWRITE

===
Example

************* OUTPUT FORMAT PARAMETERS **

**** set how you would like all of the output to print ******

@ 0 1 0 0 Lper_area Lcount_reflect Lprint_gofr Lprint_uww
@ 0 Print_rho_type
@ 1 0 Print_rho_switch Print_mesh_switch:
@ 1 IWRITE (0=MINIMAL 1=DENSITY_PROF 3=VERBOSE)

===

PARAMETER DEFINITION

Lper area: Switch to indicate how the user would like principle output parameters (Adsorption, Free Energy, Charge
in the fluid, and Force) to be printed. Note that this is a tricky quantity to define for any complex 3-dimensional
system. However, it can be useful to report per unit area results for simple surface geometries. Options include:

• Give extensive result - don’t divide by area (option 0). It should be noted that 1D problems are inherently
reported per unit area, and 2D problem results are reported per unit length.

• Report based on the total exposed surface area in the system (option 1).

Lcount reflect: If TRUE (1) compute energies and adsorptions based on the total domain accounting for reflections.
if FALSE (0) just compute for the computational box ignorning reflections.

Lprint gofr: For the special case of one fixed atom or molecule in a fluid, it is of interest to compute g(r). In this case
the radial distance from every mesh point is calculated and the normalized density, ρ(r)/ρb is reported as a function
of r from the central atom of interest.

Lprint uww: Print out the direct surface-surface interactions as well as the excess surface free energy.

Print rho type: This switch sets the way the solution data (ρ(r),ρ̄(r), ψ(r), µ(r), G(r)) will be written to files. The
options are:
(0) Put all output in dft dens.dat, dft dens2.dat (Lbinodal=TRUE), or dft dens.datg (POLYMER). This option
overwrites the file as continuation proceeds.
(1) Put the output from each run in a different file numbered as dft dens0.0, dft dens1.0, etc. (Given continuation
in one field only.

Print rho switch: This switch determines how densities will be printed in the dft force.dat file. Depending on the
type of run being performed, different renditions of the densities may be useful. The options are:
(0) Include only densities as ρbσ

3.
(1) Include the value of p/psat where psat is the saturation pressure of the fluid at the given temperature. This is
applicable only to a 1 component LJ fluid.
(2) Include the Debye screening length k−1: This is applicable only to electrolyte fluids.
(3) Include chemical potentials, µ/kT .

27

Print mesh switch: This switch sets how the mesh will be represented in the file dft force.dat. The options are to
print the surface separations between all pairs of surfaces in the domain (0) or to print the surface positions at the
center of each surface (1).

Print header: This logical (0 =FALSE, 1 =TRUE) indicates whether to print a header in the dft force.dat file(s).
If a run is going to start from an old file and add to an existing force file, it is often not be desirable to print the
header.

Iwrite: This switch controls how much output will be printed. For minimal output (no density profiles) enter 0; for
minimal output plus density profiles enter 1; to eliminate all screen output enter 2, or for verbose printing enter 3.
The files printed in each case are detailed below in the section on output files.

28

2.15 COARSENING SWITCHES

These parameters provide a variety of ways to coarsen the integrals in the residual and/or Jacobians in
order to save computational cost. ===

Prototype
Nzone
Rmax zone[izone]
Coarsen resid
Coarser jac Esize jacobian
Ljac cut Jac threshold
Matrix fill flag

===
Example

*********** COARSENING SWITCHES **
@ 1 Nzone (Coarsens Mesh/Jacobian by factor of 2)
@ 0.0 Rmax_zone[Nzone-1] [0.0 for complete coarsening]
@ 0 Coarsen_Residual ? (0=NO, 1=YES)
@ 0 0.25 Coarser_jac; Esize_jacobian
@ 0 100. Ljac_cut Jac_threshold
@ 0 Matrix_fill_flag

===

PARAMETER DEFINITION

Nzone: The number of zones the domain will be split into based on the geometry of the surfaces. These zones will
control where residual or Jacobian coarsening is applied.

Rmax zone[]: An array containing the distances from the surfaces where the various zones are active. The length of
the array is Nzone-1. This zoning works for any surface geometry of interest.

Coarsen resid: Logical (0 =FALSE : 1 =TRUE) to indicate if the residual equations will be coarsened according to
the zones. In this case, the coarsening occurs in powers of two for each zone away from the surface, and the residual
equations at the coarsened nodes are changed from the euler-lagrange equations (or other equations such as nonlocal
density equations) to a linear average of the surrounding nodes. These averaging equations are practically free of
computational cost compared with all other equations in the system.

Coarser jac: This flag sets the type of Jacobian coarsening that will be performed for a given calculation. The
options are:
(0) No Jacobian coarsening beyond the coarsening of the zones and residuals.
(1) Coarsen the Jacobian integrals in the finest zone (nearest the surfaces) by an extra power of two.
(2) Coarsen all but most coarse zone by an extra factor of two.
(3) Use the mesh spacing in the coarsest zone for Jacobian integrals in every zone.
(4) Use the mesh spacing in the second to the coarsest zone for Jacobian interals everywhere except in the coarsest
zone.
(5) Use a constant mesh spacing (Esize jacobian) to define Jacobian integrals everywhere in the domain.

Esize jacobian: See previous definition (option 5 only).

Ljac cut: A logical that indicates whether the Jacobian integrals will be cut off at some threshold value (see next
definition). This may be useful for attractive systems with rather long cutoffs.

Jac threshold: The threshold value for whether or not to include a given point in the integration stencil. A value of
100 indicates that you will reject all points smaller than 100 times less than the maximum value in the stencil.

Matrix fill flag: This flag switches between various ways to solve the system of equations. The options are:

29

(0) Use an exact Jacobian with embedded nonlocal density equaiton.
(1) Use minimal set Jacobian based only on w(3) and w(2) contributions.
(2) Use minimal set Jacobian with all scalar terms and no vector terms. This is approximate for mixtures with
different particle sizes.
(3) Use enumerated nonlocal density formulation of the equations.
(4) Use enumerated nonlocal density formulation of the equations, but include only the scaler contributions in the
Jacobian.

30

2.16 NONLINEAR SOLVER PARAMETERS

These parameters control the Newton’s method constraints and the load balancing options.
===

Prototype
Max Newton iter
Newton rel tol Newton abs tol
Load Bal Flag

===
Example

************ NONLINEAR SOLVER PARAMETERS *************************************
@ 50 Maximum # of Newton Iterations
@ 1.0e-5 1.0e-10 0.2 Relative conv. tol, Absolute conv. tol., min update fraction
@ 2 Load balance switch (0=linear,1=box,2=weights,3=timings)

===

PARAMETER DEFINITION

31

2.17 LINEAR SOLVER PARAMETERS

These parameters define how the iterative linear solves (Aztec) will be performed.
===

Prototype
Az solver Az kspace
Az scaling
Az preconditioner
Max gmres iter Az tolerance

===
Example

************ LINEAR SOLVER PARAMETERS **
@ 0 100 Solver (0=gmres, 1=cg, 2=tfqmr, 3=cg2, 4=bicgstab) Az_kspace
@ 0 Scaling (0=row_sum, 1=Jacobi, 2=symrow_sum, -1=none)
@ -1 4 Preconditioner (0=ilu, 1=Jacobi, 2=symGS, 3=LSpoly3, ilut), Az_ilut_param
@ 100 1.0e-6 Max iterations and Convergence Tolerance for Linear Solver

===

PARAMETER DEFINITION

32

2.18 MESH CONTINUATION PARAMETERS

This section sets parameters for performing mesh continuation runs. This type of continuation is not
allowed by the LOCA libraries because the mesh cannot be changed continuously.
===

Prototype
N runs
Del 1[idim=0 to Ndim-1]
Plane new nodes Pos new nodes
Guess range[0] Guess range[1]

===
Example

************* MESH CONTINUATION PARAMETERS ************************************
Here you enter information for mesh continuation.
All other types are handled by LOCA

@ 1 N_runs
@ -.2 0.0 0.0 Del_1[idim=0;Ndim] How much to change parameter.
@ 0 0 Plane_new_nodes Pos_new_nodes

(0=yz,1=xz,2=xy) (-1=lbb,0=center,1=rtf)
@ 0 0 Guess_range[]

===

PARAMETER DEFINITION

N runs: The number of mesh continuation steps to be performed.

Del 1[]: This array stores the amount the mesh size will be varied for each run. Note that all the mesh dimensions
(x,y, and z) may be changed simultaneously.

Plane new nodes: If MESH continuation is performed (Cont type 1= 0), continuation involves changing the mesh
size by insertion or deletion of plane(s) of nodes. The orientation of the new plane(s) of nodes must be indicated.
The options are: yz-plane (0), xz-plane (1), and xy-plane (2).

Pos new nodes: Again for MESH continuation, the position of the new plane(s) of nodes must be indicated. The
options are to add/delete the plane(s) of nodes from one of three positions: left-bottom-back (-1), center of box (0),
and right-top-front (1).

Guess range[]: This array stores two surface separations, and is used when performing mesh continuation specifically
for the case of two interacting surfaces. Usually this type of calculation corresponds to potential of mean force
calculations. Guess range[0] stores the maximum surface separation where Rho b will be used as an initial guess
while Guess range[1] stores the minimum surface separation where the previous solution will be used as an initial
guess. This heuristic parameter has been implemented because there are times when very steep density profile
between two surfaces will not allow for easy convergence, and it is better to start over from a bulk density initial
guess. Between Guess range[0] and Guess range[1], a mixing of the old solution and the bulk density is performed.

33

2.19 ARC-LENGTH CONTINUATION PARAMETERS

These parameters define how arc-length continuation will be performed.
===

Prototype
===

Example

************ ARC-LENGTH CONTINUATION PARAMETERS************************

===

PARAMETER DEFINITION

34

3 dft surfaces.dat

There are two primary input files for TRAMONTO. The first contains the locations of the centers of the surfaces of
interest. This data must be located in a file called dft surfaces.dat. The first column should indicate the type of the
surface of interest, the second column indicates the linkage of the surface with other surfaces, the remaining columns
give the position of the center of the surface of interest. The number of position coordinates that should be found
in this file is equal to the number of dimensions in the calculation. Unique surface types are distinguished by any
property from surface shape to interaction strengths. The array of surface types starts with zero (C convention). An
example of the dft surfaces.dat file for a case with 4 surfaces, 2 surface types, and 3 independent surfaces is shown
below.

It is desirable to link surfaces together in a variety of circumstances. One example is if all the surfaces are
individual atoms of one macromolecule. Another example is if one wants to study a chemically heterogeneous
surface. In the latter case two surface types are needed, and the walls are positioned so they touch each other. The
linkage array then indicates that they are really part of the same surface. Linkage is particularly important when
one wants to calculate the force on a compound surface.

===
Prototype for dft surfaces.dat file
WallType[iwall] Link[iwall] WallPos[iwall][idim=0] WallPos[iwall][idim=1] WallPos[iwall][idim=2]

Elec param w[iwall]
===

Example for dft surfaces.dat file

0 0 0.0 0.0 0.0 0.0
1 0 1.0 0.0 0.0 0.0
0 1 0.0 1.0 0.0 0.0

1 2 0.0 0.0 1.0 0.0

===

PARAMETER DEFINITION

iwall: The index over the number of surfaces, Nwall, in the system iwall={0,Nwall-1}.

idim: The index over the number of dimensions, Ndim in the system idim={0,Ndim-1}.

WallType: An array containing the type of each surface in the system.

Link: An array containing the linkage of each surface to a larger compound surface.

WallPos: An array containing the position of the center of each surface in the system. Note that if the flag -9999.
is entered in any of the wall positions, the surface will be randomly placed in the domain. If conditions on the
placement are desired (e.g. no overlaps) additional code must be added to the file dft input.c.

Elec param w: An array containing the electrostatics parameter of every surface. This can be a surface charge (given
as qσ2/e), surface potential (given as ψse/kT), or partial charge (given as Q/e) as defined in the array Type elec bc.
If a surface is neutral, enter 0.0 in this array.

35

4 poly file

We now briefly describe the polymer connectivity file. This file simply identifies the architecture of the chains by
defining the number of bonds at each segment as well as the bead numbers to which a given segment is bonded.
This file also identifies symmetries in the chain so that redundant equations may be removed from the system of
equations. The example shows the case of a star polymer where a central bead is connected to 4 identical arms.
Each of the arms is four beads in length, and the symmetries are enumerated.

===
Prototype for poly file file
Nbond[pol number][iseg] Bond[pol number][iseg][ibond] Pol Sym[iunk bond]

===
Example for star 4444 sym file

2 -1 -1 1 -1
2 0 -1 2 -1
2 1 -1 3 -1
2 2 -1 4 -1
4 3 -1 5 -1 9 -1 13 -1
2 4 7 6 6
2 5 5 7 4
2 6 3 8 2
2 7 1 -1 0
2 4 7 10 6
2 9 5 11 4
2 10 3 12 2
2 11 1 -1 0
2 4 7 14 6
2 13 5 15 4
2 14 3 16 2
2 15 1 -1 0

===

PARAMETER DEFINITION

pol number: The index over the polymer component of interest.

iseg: The index over the polymer segments (beads).

ibond: An index over the bonds connected to a given segment.

iunk bond: An index that runs from 0 to
∑Npol comp

pol comp=1

∑Nseg[pol comp]
iseg=1 Nbond[pol comp][iseg] that is used as an index

into the bond equation (G) unknowns. The ith bond entry in the poly file represents the unknown iunk bond = i−1.

NOTE: For mixtures, the polymer components must come in the same order as defined in polymer section of the
file dft input.dat.

Nbond[pol number][iseg]: The total number of bonds connected to a given polymer segment. Note that for end
groups, Nbond+1 is entered because there are still two G equations associated with that segment.

Bond[pol number][iseg][ibond]: An array containing the segments to which a given [pol number][iseg] are bonded.
The segments of each polymer component should be numbered starting with 0, and every end segment should have
-1 as one of the bond entries to indentify that segment as an end group to the code.

Pol Sym[iunk bond]: An array that identifies symmetries in the polymer(s) of interest. This entry should be
iunk bond = −1 if there are no symmetries. Otherwise enter another bond number (iunk bond = junk bond)
which is identical to the current entry. For symmetries, the G equation defined above will be replaced with

G[iunk bond] = G[junk bond] (27)

36

5 Cr file.dat

Finally, when running the polymer code, an input of the direct correlation function is required. This can come from
either PRISM calculations or simulations. The code currently takes the c(r) for a bulk hard chain with the same
bond patterns as the polymer of interest to the DFT calculations. Attractions are added to the polymer by assuming
c(r) = −uatt(r) for r > d as described earlier. An example of the input that will be used for a study of an 8-8 diblock
copolymer is shown below.

===
Prototype for dft surfaces.dat file
r Cr[ipol comp][jpol comp]

===
Example for crf8.8 0.7 file

0.40000E-01 -0.58756E+01 -0.58756E+01 -0.58756E+01
0.80000E-01 -0.56529E+01 -0.56529E+01 -0.56529E+01
0.12000E+00 -0.54115E+01 -0.54115E+01 -0.54115E+01
0.16000E+00 -0.51665E+01 -0.51665E+01 -0.51665E+01
0.20000E+00 -0.49236E+01 -0.49236E+01 -0.49236E+01
0.24000E+00 -0.46829E+01 -0.46829E+01 -0.46829E+01
0.28000E+00 -0.44461E+01 -0.44461E+01 -0.44461E+01
0.32000E+00 -0.42130E+01 -0.42130E+01 -0.42130E+01
0.36000E+00 -0.39847E+01 -0.39847E+01 -0.39847E+01
0.40000E+00 -0.37611E+01 -0.37611E+01 -0.37611E+01
0.44000E+00 -0.35430E+01 -0.35430E+01 -0.35430E+01
0.48000E+00 -0.33305E+01 -0.33305E+01 -0.33305E+01
0.52000E+00 -0.31242E+01 -0.31242E+01 -0.31242E+01
0.56000E+00 -0.29242E+01 -0.29242E+01 -0.29242E+01
0.60000E+00 -0.27313E+01 -0.27313E+01 -0.27313E+01
0.64000E+00 -0.25455E+01 -0.25455E+01 -0.25455E+01
0.68000E+00 -0.23676E+01 -0.23676E+01 -0.23676E+01
0.72000E+00 -0.21977E+01 -0.21977E+01 -0.21977E+01
0.76000E+00 -0.20365E+01 -0.20365E+01 -0.20365E+01
0.80000E+00 -0.18843E+01 -0.18843E+01 -0.18843E+01
0.84000E+00 -0.17417E+01 -0.17417E+01 -0.17417E+01
0.88000E+00 -0.16091E+01 -0.16091E+01 -0.16091E+01
0.92000E+00 -0.14871E+01 -0.14871E+01 -0.14871E+01
0.96000E+00 -0.13762E+01 -0.13762E+01 -0.13762E+01
0.10000E+01 -0.63836E+00 -0.63836E+00 -0.63836E+00

===

PARAMETER DEFINITION

r: The first column of numbers contains the distance r in c(r).

C(r): The 2nd-nth columns contain direct correlation function data in the following order:
• the self-terms, ii, are listed first.
• the cross-terms, ij follow.

: In the example given above, there are three columns because the calculation of interest will have an 8-8 diblock
copolymer. The first column is read in to correspond to AA interactions, the second corresponds to BB interactions,
the third corresponds to AB interactions.

37

6 Introduction to output files

6.1 Primary Output

6.1.1 dft dens.dat

This file contains the solution vector fields as a function of the position in the mesh. The first three columns are
x, y, and z. The following columns are the solution vector. The order of the columns is densities first, then fields
(for polymer cases) or nonlocal densities (for Matrix fill f lag > 2 cases), then the electrostatic potential (when
Type coul > −1), then chemical potentials (for diffusion problems).

6.1.2 dft dens.datg

This file contains the results for the propagator equations on the mesh for the case of polymer fluids.

6.1.3 dft output.dat

This file contains the principle output of the code including, adsorptions, free energies, and forces. It also contains
the surface area other factors (e.g. reflective boundary counts) used to compute the reported values. Note that the
first line of output for any continuation run will enumerate the parameter names as well as the values to facilitate
identification of the various columns in the file.

6.1.4 dft out.lis

This file echos the input file and provides details of some of the critical setup parameters including number of
boundary nodes and surface elements.

6.2 Debugging Output

These files are only produced when the Iwrite switch is set to VERBOSE (3). They are useful for a variety of
debugging tasks.

6.2.1 stencil.out

This file contains the integration stencils used for residual and jacobian calculations. The columns are an index, then
the Ndim offsets, then the weight.

6.2.2 dft vext.dat

This file contains the neutral part of the external field acting on each species as a function of position on the mesh.

6.2.3 dft vext c.dat

This file contains the Coulombic part of the external field acting on each species as a function of position on the
mesh.

6.2.4 dft zeroTF.dat

This file contains an array of 0s and 1s (False and True respectively) as a function of position on the mesh. This array
shows where the molecular theory density functional equations are replaced with the condition density=0 (wherever
this array is True).

6.2.5 dft zones.dat

This file contains the zone assignment of every node on the mesh.

38

6.2.6 rho init.dat

This file echos the initial guess used for a given run.

6.2.7 dens iter.dat

Stores the solution vector as a function of position for each Newton iteration.

6.2.8 resid iter.dat

Stores the residual vector as a function of position for each Newton iteration.

6.2.9 proc mesh.dat

This file contains data on the node to processor map obtained by the load balancing process.

6.2.10 Charge vol els.dat

This file contains the volumetric charge as a function of position. Note that volumetric charges are assigned on a
per element basis so the first Ndim columns are the position of the centers of the elements.

6.2.11 Charge surf els.dat

This file contains the surface charge distribution as a function of position. Not that surface charges are assigned to
nodes so the first Ndim columns give the positions of the nodes.

39

